摘要
研究非奇异M-矩阵A的最小特征值τ(A)的估计问题。利用Gerschgorin圆盘定理和逆矩阵元素的上界,给出非负矩阵B与A的逆矩阵A-1的Hadamard积的谱半径ρ(B°A-1)的新的上界估计式,利用该估计式给出τ(A)的单调递增的收敛的下界序列。数值算例表明,所得结果比现有估计精确,且在某些情况下能达到真值。
Consider the estimate problem of the minimum eigenvalue of nonsingular M-matrices. Using Gerschgorin's theorem and the upper bounds of the elements of A-1,some new upper bounds for the spectral radius of the Hadamard product,ρ( B°A-1),of a nonnegative matrix B and the inverse of A are obtained. From which,some monotone increasing and convergent sequences of lower bounds of τ( A) are given. The results of numerical examples show that the obtained estimations are more accurate than some existing results and could reach the true value in some cases.
作者
桑彩丽
赵建兴
SANG Caili;ZHAO Jianxing(College of Data Science and Information Engineering,Guizhou Minzu University,Guiyang 550025,Chin)
出处
《黑龙江大学自然科学学报》
CAS
2018年第3期271-276,共6页
Journal of Natural Science of Heilongjiang University
基金
国家自然科学基金资助项目(11501141)
贵州省科学技术基金资助项目(黔科合J字[2015]2073号)
贵州省教育厅科技拔尖人才支持项目(黔教合KY字[2016]066号)