期刊文献+

非奇异M-矩阵最小特征值的估计序列 被引量:1

Estimated sequences for the minimum eigenvalue of nonsingular M-matrices
下载PDF
导出
摘要 研究非奇异M-矩阵A的最小特征值τ(A)的估计问题。利用Gerschgorin圆盘定理和逆矩阵元素的上界,给出非负矩阵B与A的逆矩阵A-1的Hadamard积的谱半径ρ(B°A-1)的新的上界估计式,利用该估计式给出τ(A)的单调递增的收敛的下界序列。数值算例表明,所得结果比现有估计精确,且在某些情况下能达到真值。 Consider the estimate problem of the minimum eigenvalue of nonsingular M-matrices. Using Gerschgorin's theorem and the upper bounds of the elements of A-1,some new upper bounds for the spectral radius of the Hadamard product,ρ( B°A-1),of a nonnegative matrix B and the inverse of A are obtained. From which,some monotone increasing and convergent sequences of lower bounds of τ( A) are given. The results of numerical examples show that the obtained estimations are more accurate than some existing results and could reach the true value in some cases.
作者 桑彩丽 赵建兴 SANG Caili;ZHAO Jianxing(College of Data Science and Information Engineering,Guizhou Minzu University,Guiyang 550025,Chin)
出处 《黑龙江大学自然科学学报》 CAS 2018年第3期271-276,共6页 Journal of Natural Science of Heilongjiang University
基金 国家自然科学基金资助项目(11501141) 贵州省科学技术基金资助项目(黔科合J字[2015]2073号) 贵州省教育厅科技拔尖人才支持项目(黔教合KY字[2016]066号)
关键词 M-矩阵 非负矩阵 HADAMARD积 谱半径 最小特征值 M-matrix nonnegative matrix Hadamard product spectral radius minimum eigenvalue
  • 相关文献

参考文献1

二级参考文献8

  • 1Shivakumar P N, Williams J J, Ye Q, et al. On two-sided bounds related to weakly diagonally dominant M-matrices with application to digital circuit dynamics[J]. SIAM J Ma- trix Anal Appl, 1996,17:298-312.
  • 2Tian G X, Huang T Z. Inequalities for the minimum eigen- value of M-matrices[J]. Electron J Linear Algebra, 2010, 20:291-302.
  • 3Li C Q,Li Y T, Zhao R J. New inequalities for the mini- mum eigenvalue of M-matrices[J]. Linear Multilinear A, 2013,61 (9) : 1267-1279.
  • 4Xu M,Li S H,Li C Q. Inequalities for the minimum eigen- value of doubly strictly diagonally dominant M-matrices [J]. J Appl Mathe,2014,2014:1-8.
  • 5Varga R S. Gerscgorin and his circles[M]. Berlin: Springer- Verlag, 2004.
  • 6Horn R A,Johnson C R. Topics in matrix analysis[M]. Cambridge : Cambridge University Press, 1985.
  • 7Cben F B. New inequalities for the Hadamard product of an M-matrix and its inverse[J]. J Inequal Appl, 2015,35: 1- 12.
  • 8刘新,杨晓英.M-矩阵Hadamard积最小特征值的新下界[J].重庆师范大学学报(自然科学版),2013,30(2):53-55. 被引量:5

共引文献10

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部