摘要
农业数据具有数据量大、类型复杂、分散、获取难度大等特点。随着现代农业的发展,出现了大量非关系型、非结构化数据,大数据环境下的数据挖掘技术能够高效地从海量数据中挖掘有价值的信息,有助于探索农业信息潜在的相关性和规律。文章分析了农业数据的特点、数据分析现状和大数据技术的优势,构建了基于Hadoop的农业大数据挖掘系统,分析了系统的架构、模块设计及系统实现。
The main characters of agricultural data are massive, complex, disperse and difficult to acquire. With the developing of modern agriculture, the massive non-relational and unstructured data appeared, data mining technology based on big data can extract valuable information from massive data, and contribute to research the potential relativity and rules of agriculture information. This paper analyzed the characters of agricultural data, and the status of data analysis and the superiority of big data technology, developed the agricultural big data mining system based on Hadoop,and studied the architecture, module designing and system realization.
作者
侯亮
王新栋
高倩
刘素英
HOU Liang;WANG Xindong;GAO Qian;LIU Suying(Institute of Agricultural Information and Economy,Hebei Academy of Agriculture and Forestry Science)
出处
《农业图书情报学刊》
2018年第7期19-21,共3页
Journal of Library and Information Sciences in Agriculture
基金
河北省农林科学院财政项目"黑龙港地区小麦产量与水资源相关性分析研究"(项目编号:F16R02)
关键词
农业
大数据
数据挖掘
agriculture
big data
data mining