期刊文献+

Rotational motion of polyanion versus volume effect associated with ionic conductivity of several solid electrolytes 被引量:3

Rotational motion of polyanion versus volume effect associated with ionic conductivity of several solid electrolytes
原文传递
导出
摘要 Volume effect has been extensively investigated in several families of solid electrolytes, i.e., expanding the skeleton lattice by bigger-size substitution favors the ionic conduction. However, this effect is not applicable in α-Li2SO4 and α-Na3PO4 based inorganic ionic plastic crystal electrolytes, a unique family of solid electrolytes. Here, it is proposed that the underlying rotational motion effect of polyanion, which is actually inhibited by the substitution of bigger-size polyanion in single-phase solid solution region and causes the unexpected lowering of the ionic conductivity instead, should need the more consideration. Furthermore, through utilizing the rotational motion effect of polyanion, it is given that a new explanation of the ionic conductivities of Li10MP2S12 (M = Si, Ge, Se) electrolytes deviating from the volume effect. These results inspire new vision of rationalization of the high-performance solid electrolytes by tuning the rotational motion effect of polyanion. Volume effect has been extensively investigated in several families of solid electrolytes, i.e., expanding the skeleton lattice by bigger-size substitution favors the ionic conduction. However, this effect is not applicable in α-Li2SO4 and α-Na3PO4 based inorganic ionic plastic crystal electrolytes, a unique family of solid electrolytes. Here, it is proposed that the underlying rotational motion effect of polyanion, which is actually inhibited by the substitution of bigger-size polyanion in single-phase solid solution region and causes the unexpected lowering of the ionic conductivity instead, should need the more consideration. Furthermore, through utilizing the rotational motion effect of polyanion, it is given that a new explanation of the ionic conductivities of Li10MP2S12 (M = Si, Ge, Se) electrolytes deviating from the volume effect. These results inspire new vision of rationalization of the high-performance solid electrolytes by tuning the rotational motion effect of polyanion.
出处 《Rare Metals》 SCIE EI CAS CSCD 2018年第6期497-503,共7页 稀有金属(英文版)
基金 financially supported by the National Natural Science Foundation of China(Nos.U1430104,51622207 and 51372228) the National Key Research and Development Program of China(No.2017YFB0701600)
关键词 Volume effect Rotational motion ofpolyanion Ionic conductivity Inorganic plastic crystalelectrolyte Volume effect Rotational motion ofpolyanion Ionic conductivity Inorganic plastic crystalelectrolyte
  • 相关文献

同被引文献16

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部