期刊文献+

我国“学生减负”问题的网络舆情分析——以新浪微博为例

An Analysis of the Internet Public Opinion of the Problem of “Reducing Students' Burdens” in China——Taking Sina Weibo as an Example
下载PDF
导出
摘要 近日,江苏省溧阳市教育局印发了《溧阳市教育局关于切实减轻中小学生课业负担的意见,其中明确了如果家庭作业来不及完成,家长签字后可免做未完成的作业,以保证学生充足的睡眠时间。该消息通过新浪微博中人民网的官方微博得到发布,并迅速引起了网民的转发与热议,形成网络教育舆论。本文试图从网络舆情传播模式、网络舆情主体、网络舆情内容三个维度对该舆情进行分析,得出以下结论:该舆情传播模式属于单核心传播模式;网络舆情主体分布存在空间与时间上的差异;舆情的焦点是部分教学管理权力从教师转向家长是否具有合理性。 In recent days, the Education Bureau of Xiangyang City, Jiangsu Province, issued the "Opinions of the Education Bureau of Xiangyang City on Practically Reducing the Burden of Students' Schoolwork" on March 28, 2018. It clearly clarifies that students should have enough sleep time. If the homework is too late to be completed, parents can avoid doing unfinished work after signing. The news was released via Sina Weibo's official Weibo microblog, and quickly caused the Intemet users to forward and hotly discuss the formation of online education public opinion. This article attempts to analyze the public opinion from the three perspectives of the Intemet public opinion transmission model, the Intemet public opinion subject, and the Internet public opinion content, and concludes that the public opinion transmission model belongs to the single core communication model; the distribution of the Internet public opinion subject has its spatial and temporal differences; The focus is whether part of the teaching management power turns from teachers to parents.
作者 王阔 韩萌萌 WANG Kuo;HAN Mengrneng
出处 《现代教育论丛》 2018年第3期31-37,共7页 Modern Education Review
关键词 网络舆情 学生减负 社会网络分析 数据可视化 intemet sentiment student burden social network analysis data visualization
  • 相关文献

参考文献4

二级参考文献27

  • 1王曰芬,宋爽,苗露.共现分析在知识服务中的应用研究[J].现代图书情报技术,2006(4):29-34. 被引量:59
  • 2Chen Hsinchun. Knowledge management systems: a text mining perspective. [2005-10-05].http://ai.bpa.arizona.edu/go/download/chenKMSi.pdf.
  • 3Morris T A. Structural relationships within medical informatics:a classification/indexing Co-occurrence analysis.[D].Philadelphia:Drexel University, 2001
  • 4Stegrnann J, Grohrnann G. Hypothesis generation guided by co-word clustering. Scientometrics, 2003,56(1): 111-135.
  • 5Cohen AM, Hersh WR, Dubay C et al. Using co-occurrence network structure to extract synonymous gene and protein names from MEDLINE abstracts.[2006-04-25].http://medir.ohsu.edu/-cohenaa/Cohen2005-GeneSynonyms-BMCBioinformaticsProvisional.pdf.
  • 6He Qing. Knowledge discovery through Co-word analysis.[2006-03-29].http://www.findarticles.com/p/articles/ mi_m1387/is_1_48/ai_57046530.
  • 7Ding Ying, Chowdhury G G, Foo S. Bibliometric cartography of information retrieval research by using co-word analysis.Information Processing and Management, 2001,37(6):817-842.
  • 8Noyons Ed C M, Bibliometric mapping as a science policy and research management tool.[2006-04-12].http://www.cwts.nl/cwts/Noyons_1999.pdf.
  • 9Polanco X. Clustering and mapping web sites for displaying implicit associations and visualizing networks.[2006-03-29].http://www.math.upatras.gr/-mboudour/articles/web_clustering&mapping.pdf.
  • 10Monarch I A. Information Science and Information Systems:Converging or Diverging?[2006-04-20].http://www.cais-acsi.ca/proceedings/2000/monarch_2000.pdf.

共引文献645

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部