期刊文献+

Cube texture formation of Ni9.3W alloy substrates:preparation by optimized deformation sequence and anneal process

Cube texture formation of Ni9.3W alloy substrates:preparation by optimized deformation sequence and anneal process
原文传递
导出
摘要 The Ni9.3W alloy with no ferromagnetism and high yield strength is one of the most promising textured substrate materials for coated conductors, but its low stacking fault energy makes it difficult to obtain a strong cube texture by traditional rolling methods and recrystal- lization anneals. This paper introduces four-time static recoveries during the rolling process. Rolled tapes with 80 μm in thickness were obtained by applying various deformation sequences between static recoveries to study their effects on the cube texture formation in Ni9.3W alloy substrates. The results show that rising gradient deformation sequence is an advantageous way to obtain a higher amount of cube texture, its content increases by 29.2% compared to that of traditional deformation sequence. The effect of the new recrystallization annealing process on the cube texture formation was analyzed. It is shown that the cube texture content increases with anneal temperature increasing in one-step anneal, but decreases again at higher anneal temperature. Two-step anneal could effectively improve the cube texture content, which could be further enhanced by extending holding time during the first-step anneal. However, too long holding time leads to the decrease in cube texture content. Finally, Ni9.3W alloy substrates with a cube texture content of -90.0 vol% (〈15°) are obtained by optimized two-step anneal. The Ni9.3W alloy with no ferromagnetism and high yield strength is one of the most promising textured substrate materials for coated conductors, but its low stacking fault energy makes it difficult to obtain a strong cube texture by traditional rolling methods and recrystal- lization anneals. This paper introduces four-time static recoveries during the rolling process. Rolled tapes with 80 μm in thickness were obtained by applying various deformation sequences between static recoveries to study their effects on the cube texture formation in Ni9.3W alloy substrates. The results show that rising gradient deformation sequence is an advantageous way to obtain a higher amount of cube texture, its content increases by 29.2% compared to that of traditional deformation sequence. The effect of the new recrystallization annealing process on the cube texture formation was analyzed. It is shown that the cube texture content increases with anneal temperature increasing in one-step anneal, but decreases again at higher anneal temperature. Two-step anneal could effectively improve the cube texture content, which could be further enhanced by extending holding time during the first-step anneal. However, too long holding time leads to the decrease in cube texture content. Finally, Ni9.3W alloy substrates with a cube texture content of -90.0 vol% (〈15°) are obtained by optimized two-step anneal.
出处 《Rare Metals》 SCIE EI CAS CSCD 2018年第8期662-667,共6页 稀有金属(英文版)
基金 financially supported by the National Municipal Natural Science Foundation (Nos.51571002,51171002) the Beijing Municipal Natural Science Foundation (Nos.2132011,2172008) the Doctoral Program of Higher Education of Special Research Fund (No.20121103110012) Beijing Municipal Natural Science Foundation B Type(No.KZ201310005003) the Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges under Beijing Municipality (No.IDHT20130510)
关键词 Ni9.3W substrates Deformation sequence Anneal process Cube texture Ni9.3W substrates Deformation sequence Anneal process Cube texture
  • 相关文献

参考文献1

二级参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部