摘要
纹理是图像的重要特征。合成孔径声纳图像中,水底展示出了丰富的纹理。纹理分析在声图处理中有多种用途,具有重要意义和研究价值。本文比较了不同的纹理描述方法应用与光学图像与声图中时的性能。使用基于支持向量机的主动学习方法,降低了人工标签的工作量。
Textures are important features of image. In synthetic aperture sonar images,the seabed exhibits rich texture features. Texture analysis has many applications in sonar image processing,thus is of great significance and worth researching. This paper compares the performance of different texture descriptors with optical image and sound image. The active learning method based on support vector machine is used to reduce the workload of manual labeling.
作者
翟厚曦
江泽林
段江涛
张武
刘纪元
ZHAI Houxi;JIANG Zelin;DUAN Jiangtao;ZHANG Wu;LIU Jiyuan(Engineering Center of Acoutice,Institute of Acoustics,Chinese Academy of Sciences,Beijing,100190,China;University of Chinese Academy of Sciences,Beijing,100190,China)
出处
《网络新媒体技术》
2018年第4期15-23,共9页
Network New Media Technology
关键词
合成孔径声纳
纹理分析
支持向量机
主动学习
synthetic aperture sonar
texture analysis
support vector machine
active learning