期刊文献+

Seasonal and spatial variations in rare earth elements and yttrium of dissolved load in the middle,lower reaches and estuary of the Minjiang River,southeastern China 被引量:1

Seasonal and spatial variations in rare earth elements and yttrium of dissolved load in the middle, lower reaches and estuary of the Minjiang River, southeastern China
下载PDF
导出
摘要 A bstract With the aim of elucidating the spatial and seasonal behaviors of rare earth elements(REEs), we investigated the dissolved REE concentrations of surface water collected during four seasons from middle, lower reaches and estuary of the Minjiang River, southeastern China. The results display that the REE abundances in Minjiang River, ranging from 3.3–785.9 ng/L, were higher than those of many of the major global rivers. The total REE concentrations(∑REE) were seasonally variable, averaging in 5 937.30, 863.79, 825.65 and 1 065.75 ng/L during second highest flow(SHF), normal flow(NF), low flow(LF) and high flow(HF) season, respectively. The R_(( L/M)) and R_((H/M)) ratios reveal the spatial and temporal variations of REE patterns, and particularly vary apparently in the maximum turbidity zone and estuary. REE patterns of dissolved loads are characterized by progressing weaker LREEs-enrichment and stronger HREEsenrichment downstream from middle reaches to estuary during all four seasons. Comparing with NF and LF seasons, in which REE patterns are relatively flat, samples of SHF season have more LREE-enriched and HREE-depleted patterns that close to parent rocks, while samples of HF season are more LREEs-depleted and HREE-enriched. REE fractionations from the middle to lower reaches are stronger in the SHF and HF seasons than those in NF and LF seasons. Generally, spatial and seasonal variations in REE abundance and pattern are presumably due to several factors, such as chemical weathering, mixture with rainfall and groundwater, estuarine mixing, runoff, biological production and mountain river characters, such as strong hydrodynamic forces and steep slopes. The highest Gd/Gd* always occurs at north ports during all four seasons, where most of the large hospitals are located. This suggests Gd anomalies are depended on the density of modern medical facilities. Y/Ho ratios fl uctuate and positively correlate to salinity in estuary, probably because of the geochemical behavior differences between Y and Ho. A bstract With the aim of elucidating the spatial and seasonal behaviors of rare earth elements(REEs), we investigated the dissolved REE concentrations of surface water collected during four seasons from middle, lower reaches and estuary of the Minjiang River, southeastern China. The results display that the REE abundances in Minjiang River, ranging from 3.3–785.9 ng/L, were higher than those of many of the major global rivers. The total REE concentrations(∑REE) were seasonally variable, averaging in 5 937.30, 863.79, 825.65 and 1 065.75 ng/L during second highest flow(SHF), normal flow(NF), low flow(LF) and high flow(HF) season, respectively. The R_(( L/M)) and R_((H/M)) ratios reveal the spatial and temporal variations of REE patterns, and particularly vary apparently in the maximum turbidity zone and estuary. REE patterns of dissolved loads are characterized by progressing weaker LREEs-enrichment and stronger HREEsenrichment downstream from middle reaches to estuary during all four seasons. Comparing with NF and LF seasons, in which REE patterns are relatively flat, samples of SHF season have more LREE-enriched and HREE-depleted patterns that close to parent rocks, while samples of HF season are more LREEs-depleted and HREE-enriched. REE fractionations from the middle to lower reaches are stronger in the SHF and HF seasons than those in NF and LF seasons. Generally, spatial and seasonal variations in REE abundance and pattern are presumably due to several factors, such as chemical weathering, mixture with rainfall and groundwater, estuarine mixing, runoff, biological production and mountain river characters, such as strong hydrodynamic forces and steep slopes. The highest Gd/Gd* always occurs at north ports during all four seasons, where most of the large hospitals are located. This suggests Gd anomalies are depended on the density of modern medical facilities. Y/Ho ratios fl uctuate and positively correlate to salinity in estuary, probably because of the geochemical behavior differences between Y and Ho.
作者 朱旭旭 高爱国 林建杰 简星 杨玉峰 张延颇 侯昱廷 龚松柏 ZHU Xuxu;GAO Aiguo;LIN Jianjie;JIAN Xing;YANG Yufeng;ZHANG Yanpo;HOU Yuting;GONG Songbai(College of Ocean and Earth Sciences,Xiamen University,Xiamen 361102,China;State Key Laboratory of Marine Environmental Sciences,Xiamen 361102,China;Marine and Fisheries Technology Center of Fuzhou,Fuzhou 350026,China)
出处 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2018年第3期700-716,共17页 海洋湖沼学报(英文)
基金 Supported by the National Natural Science Foundation of China(No.41376050)
关键词 稀土元素 浓度 生态环境 湖泊 rare earth elements(REEs) Minjiang River estuarine mixing process dissolved load online pre-concentration system
  • 相关文献

参考文献7

二级参考文献64

共引文献128

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部