期刊文献+

伴流速度对平行喷口射流影响的数值研究 被引量:2

Numerical investigation of influence of co-flow velocity on plane jet
原文传递
导出
摘要 采用大涡模拟方法计算研究平行喷口出口马赫数为0.9,伴流速度比分别为0.1、0.3和0.5时的喷射流场特性。计算时采用高精度的数值模拟方法,并结合Smagorinsky亚网格尺度模型。考察了流场统计平均特性、脉动特性以及射流流场中涡结构的发展演变过程,结果表明:伴流速度的增大使得势流核长度变长,减缓了空间剪切层的发展,转捩延迟。喷射流场速度分布具有自相似性,而湍流强度的分布则不具有相似性。通过分析剪切层中轴向速度脉动、径向速度脉动、压力脉动在空间任意两点上的时空相关性,发现随着伴流速度的增大,脉动量在空间上的相关性减弱,而脉动量向下游的传递速率增加。该研究结果为进一步揭示伴流速度对喷流声场的影响提供基础。 The characteristics of plane jet were investigated by large eddy simulation,at the outlet of plane jet Mach number of 0.9 and the co-flow velocity ratio of 0.1,0.3 and0.5,respectively.High resolution numerical method and Smagorinsky sub-grid scale model were used.The mean flow properties,fluctuations and the evolution of the vortical structures were analyzed.Result showed that with the growth of the co-flow velocity,the potential core length increased while the development of the shear layer was slowed down and the jet transition was delayed.The velocity distribution was self-similar,but possible similarity in the turbulence intensity was not found.Two-point space-time correlations of the velocity and pressure fluctuations in the shear layer were investigated.It was found that the increase of the co-flow velocity weakened the space-time correlations,but accelerated the spreads of fluctuations to the downstream.This study provides a basis for revealing the effect of coflow velocity on the sound field.
作者 何诚 赖焕新 HE Cheng;LAI Huanxin(Key Lab of Pressurized Systems and Safety,Ministry of Education,School of Mechanical and Power Engineering,East China University of Science and Technology,Shanghai 200237,Chin)
出处 《航空动力学报》 EI CAS CSCD 北大核心 2018年第8期2006-2015,共10页 Journal of Aerospace Power
基金 国家自然科学基金(51576067)
关键词 伴流速度 射流 高精度 大涡模拟 时空相关性 co-flow velocity jet high resolution large eddy simulation space-time correlation
  • 相关文献

参考文献1

二级参考文献22

  • 1Boersma B J, Brethouwer G, Nieuwstadt F T M. A numerical investigation of the effect on inflow conditions on the self-similar region of a round jet [J]. Phys Fluids, 1998, 10: 899-909.
  • 2Fuxing Y, Jianren F, Debo L, et al. Three-dimensional time-dependent numerical simulation of a quiescent car- bon combustion in air[J]. Fuel, 2011,90. 1522-1528.
  • 3Muppidi S, Mahesh K. Direct numerical simulation of round turbulent jets in crossflow[J]. Journal of Computa- tionalPhysics, 2007, 574: 59-84.
  • 4Le H, Moin P, Kim J. Direct numerical simulation of turbulent flow over a backward-facing step[J]. J Fluid Mech, 1997, 330: 349-374.
  • 5Freund J. Noise sources in a low-Reynolds-number turbu- lent jet at Math 0.9 [J]. JFluid Meeh, 2001, 438 : 277- 3O5.
  • 6Xu H. Direct numerical simulation of turbulence in a square annular duct[J].JFluidMech, 2009, 621: 23- 57.
  • 7Bogey C, Bailly C. Turbulence and energy budget in aself-preserving round jet: Direct evaluation using large eddy simulation[J].J Fluid Mech, 2009, 627: 129- 160.
  • 8Wu X, Moin P. Direct numerical simulation of turbu- lence in a nominally zero-pressure-gradient fiat-plate boundary layer [J]. JFluid Mech, 2009, 630 : 5-41.
  • 9Poinsot T, Veynante D, Theoretical and Numerical Combustion [M]. 2nd ed. France: Edwards, 2005.
  • 10Vichnevetsky R, Bowles J B. Fourier Analysis of Nu- merical Approximations of Hyperbolic Equations [M]. Philadelphia: SIAM Studies in Applied Mechanics, 1982.

共引文献1

同被引文献5

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部