期刊文献+

Treatment with NADPH oxidase inhibitor apocynin alleviates diabetic neuropathic pain in rats 被引量:4

Treatment with NADPH oxidase inhibitor apocynin alleviates diabetic neuropathic pain in rats
下载PDF
导出
摘要 Increased reactive oxygen species by the activation of NADPH oxidase(NOX) contributes to the development of diabetic complications.Apocynin,a NOX inhibitor,increases sciatic nerve conductance and blood flow in diabetic rats.We investigated potential protective effect of apocynin in rat diabetic neuropathy and its precise mechanism of action at molecular level.Rat models of streptozotocin-induced diabetes were treated with apocynin(30 and 100 mg/kg per day,intragastrically) for 4 weeks.Mechanical hyperalgesia and allodynia were determined weekly using analgesimeter and dynamic plantar aesthesiometer.Western blot analysis and histochemistry/immunohistochemistry were performed in the lumbar spinal cord and sciatic nerve respectively.Streptozotocin injection reduced pain threshold in analgesimeter,but not in aesthesiometer.Apocynin treatment increased pain threshold dose-dependently.Western blot analysis showed an increase in catalase and NOX-p47 phox protein expression in the spinal cord.However,protein expressions of neuronal and inducible nitric oxide synthase(n NOS,i NOS),superoxide dismutase,glutathion peroxidase,nitrotyrosine,tumor necrosis factor-α,interleukin-6,interleukin-1β,aldose reductase,cyclooxygenase-2 or MAC-1(marker for increased microgliosis) in the spinal cord remained unchanged.Western blot analysis results also demonstrated that apocynin decreased NOX-p47 phox expression at both doses and catalase expression at 100 mg/kg per day.Histochemistry of diabetic sciatic nerve revealed marked degeneration.n NOS and i NOS immunoreactivities were increased,while S-100 immunoreactivity(Schwann cell marker) was decreased in sciatic nerve.Apocynin treatment reversed these changes dose-dependently.In conclusion,decreased pain threshold of diabetic rats was accompanied by increased NOX and catalase expression in the spinal cord and increased degeneration in the sciatic nerve characterized by increased NOS expression and Schwann cell loss.Apocynin treatment attenuates neuropathic pain by decelerating the increased oxidative stress-mediated pathogenesis in diabetic rats. Increased reactive oxygen species by the activation of NADPH oxidase(NOX) contributes to the development of diabetic complications.Apocynin,a NOX inhibitor,increases sciatic nerve conductance and blood flow in diabetic rats.We investigated potential protective effect of apocynin in rat diabetic neuropathy and its precise mechanism of action at molecular level.Rat models of streptozotocin-induced diabetes were treated with apocynin(30 and 100 mg/kg per day,intragastrically) for 4 weeks.Mechanical hyperalgesia and allodynia were determined weekly using analgesimeter and dynamic plantar aesthesiometer.Western blot analysis and histochemistry/immunohistochemistry were performed in the lumbar spinal cord and sciatic nerve respectively.Streptozotocin injection reduced pain threshold in analgesimeter,but not in aesthesiometer.Apocynin treatment increased pain threshold dose-dependently.Western blot analysis showed an increase in catalase and NOX-p47 phox protein expression in the spinal cord.However,protein expressions of neuronal and inducible nitric oxide synthase(n NOS,i NOS),superoxide dismutase,glutathion peroxidase,nitrotyrosine,tumor necrosis factor-α,interleukin-6,interleukin-1β,aldose reductase,cyclooxygenase-2 or MAC-1(marker for increased microgliosis) in the spinal cord remained unchanged.Western blot analysis results also demonstrated that apocynin decreased NOX-p47 phox expression at both doses and catalase expression at 100 mg/kg per day.Histochemistry of diabetic sciatic nerve revealed marked degeneration.n NOS and i NOS immunoreactivities were increased,while S-100 immunoreactivity(Schwann cell marker) was decreased in sciatic nerve.Apocynin treatment reversed these changes dose-dependently.In conclusion,decreased pain threshold of diabetic rats was accompanied by increased NOX and catalase expression in the spinal cord and increased degeneration in the sciatic nerve characterized by increased NOS expression and Schwann cell loss.Apocynin treatment attenuates neuropathic pain by decelerating the increased oxidative stress-mediated pathogenesis in diabetic rats.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第9期1657-1664,共8页 中国神经再生研究(英文版)
基金 supported by the Research Fund of Ege University(Project No.2010-TIP-076)
关键词 APOCYNIN diabetic complications experimental diabetes mellitus neuropathic pain NADPH oxidase sciatic nerve spinal cord Western blotting peripheral nerve injury neural regeneration apocynin diabetic complications experimental diabetes mellitus neuropathic pain NADPH oxidase sciatic nerve spinal cord Western blotting peripheral nerve injury neural regeneration
  • 相关文献

同被引文献26

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部