期刊文献+

锂电池极片微结构优化及可控制备技术进展 被引量:4

Progress on Microstructural Optimization and Controllable Preparation Technology for Lithium Ion Battery Electrodes
下载PDF
导出
摘要 锂离子电池是应用最广泛的电化学储能器件,目前,经济的快速发展对其提出了更高的要求。电极微观结构对电池性能影响显著,电极微结构精细设计及可控制备成为锂离子电池领域的研究热点之一。本文结合锂离子电池最新发展趋势,总结了锂离子电池电极反应基本过程及电极微结构的表征技术,然后概述了近几年电极微观结构的设计与优化,并分析了电极微结构的关键特征。基于理想的电极结构,综述了电极可控制备技术的最新进展。 Lithium-ion batteries are the most widely used energy storage device,and currently,the rapid development of economy has put forward higher requirements on their performances. Electrode microstructure has significant influence on the battery performance, therefore, elaborate microstructure design and controllable preparation thereof is becoming one of the hot topics in this field. In this paper,according to the latest development trend of lithium ion batteries,the basic electrochemical process and the microstructural characterization technology of the lithium ion battery electrode are enumerated. Then the design and optimization of the electrode in recent years are summarized, and the key microstructural features are discussed. Based on an ideal electrode structure,the latest development in controllable electrode preparation technology is reviewed.
作者 巫湘坤 詹秋设 张兰 张锁江 WU Xiangkun;ZHAN Qiushe;ZHANG Lan;ZHANG Suojiang(a.Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China;b.Zhengzhou Institute of Emerging Industrial Technology,Zhengzhou 450000,Chin)
出处 《应用化学》 CAS CSCD 北大核心 2018年第9期1076-1092,共17页 Chinese Journal of Applied Chemistry
基金 国家重点研发计划(2016YFB0100100) 国家自然科学基金(21706262) 北京市自然科学基金-海淀原始创新联合基金(L172045) 郑州市科技重大专项(174PZDZX570)资助~~
关键词 锂电池 微观结构 制备技术 battery microstructure preparation technology
  • 相关文献

参考文献4

二级参考文献45

  • 1Wang, C. W.; Sastry, A. M. J. Electrochem. Soc. 2007, 154, A1035.
  • 2Du, W. B.; Gupta, A.; Zhang, X. C.; Sastry, A. M.; Wei, S. Y. Int. J. Heat Mass Transfer2010, 53, 3552. doi: 10.1016/j. iiheatmasstransfer.2010.04.017.
  • 3Gupta, A.; Seo, J. H.; Zhang, X. C.; Du, W. B.; Sastry, A. M.; Wei, S. Y. J. Electrochem. Soc. 2011, 158, A487.
  • 4Spanne, P.; Thovert, J. F.; Jacquin, C. J. Phys. Rev. Lett. 1994, 73, 2001. doi: 10.1103/PhysRevLett.73.2001.
  • 5Yoshizawa, N.; Tanaike, O.; Hatori, H. Carbon 2006, 44, 2558. doi: 10.1016/j.carbon.2006.05.041.
  • 6Groeber, M. A.; Haley, B. K.; Uchic, M. D. Mater Charact. 2006, 57, 259. doi: 10.1016/j.matchar.2006.01.019.
  • 7Shearing, P. R.; Golbert, J.; Chater, R. J. Chem. Eng. Sci. 2009, 64, 3928. doi: 10.1016/j.ces.2009.05.038.
  • 8Yuan, B. K.; Chen, P. C.; Zhang, J.; Cheng, Z. H.; Qiu, X. H.; Wang, C. Acta Phys. -Chim. Sin. 2013, 29, 1370.
  • 9Ding, P.; Xu, Y. L.; Sun, X. F. Acta Phys. -Chim. Sin. 2013, 29, 293.
  • 10Quiblier, J. J. Colloid Interface Sci. 1984, 98, 84.

共引文献40

同被引文献35

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部