期刊文献+

多铁性磁电器件研究进展 被引量:12

Recent progress of multiferroic magnetoelectric devices
下载PDF
导出
摘要 多铁性材料可以实现力、电、磁等多物理场之间的相互耦合,在小尺寸、快速响应和低功耗的磁电器件领域具有重要的应用前景.在应用需求的推动下,以具有磁电耦合效应的多铁性材料为基础的磁电器件在设计、微纳加工和性能优化等方面的研究取得了持续的进展.本文简要介绍了基于磁电耦合效应的几种原型器件的最新进展,包括可调谐电感、滤波器、磁电存储器、能量回收器、磁电传感器和磁电天线等,分析总结了各种磁电器件的工作原理及其性能表现,讨论了当前多铁性磁电器件研究所面临的问题和挑战,并提出了改进磁电器件性能的研究方向. Multiferroic composites possess the coupling effect among mechanical, electrical, and magnetic ordering, showing potential applications in compact, fast, and low-power magnetoelectric devices. Owing to the increasing application demand, the researches of device design, micro-/nano-fabrication, and performance test of magnetoelectric devices have made continuous progress. In this review, we briefly introduce several prototype devices based on magnetoelectric coupling, analyze the noteworthy application techniques, and summarize the working mechanisms and performances of devices including tunable inductors, RF/microwave filters, magnetoelectric memories, energy harvesters, magnetoelectric sensors, magnetoelectric antennas, etc. Besides, we discuss the issues and challenges in researches of multiferroic magnetoelectric devices, and present the perspectives for improving the device performance.
作者 俞斌 胡忠强 程宇心 彭斌 周子尧 刘明 Yu Bin;Hu Zhong-Qiang;Cheng Yu-Xin;Peng Bin;Zhou Zi-Yao;Liu Ming(Electronic Materials Research Laboratory,Key Laboratory of the Ministry of Education and International Center for Dielectric Research,School of Electronic and Information Engineering,Xi'an Jiaotong University,Xi'an 710049,China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2018年第15期115-128,共14页 Acta Physica Sinica
基金 国家自然科学基金(批准号:51472199,11534015)和111引智计划(批准号:B14040)资助的课题
关键词 磁电耦合效应 可调滤波器 磁电传感器 磁电存储器 magnetoelectric coupling effect tunable filter magnetoelectric sensor magnetoelec tric memory
  • 相关文献

参考文献5

二级参考文献413

  • 1迟振华,靳常青.单相磁电多铁性体研究进展[J].物理学进展,2007,27(2):225-238. 被引量:29
  • 2Kimura T, Lashley J C, Ramirez A. Inversion-symmetry breaking in the noncollinear magnetic phase of the triangular-lattice antiferromagnet CuFeO2. Pbys Rev B, 2006, 73:220401 (R).
  • 3Ye F, Fernandez-Baca A, Fishman R S, et al. Magnetic interactions in the geometrically frustrated triangular lattice antiferromagnet CuFeO2. Phys Rev Lett, 2007, 99:157201.
  • 4Lawes G, Kenzelamnn M, Rogada N, et al. Competing magnetic phases on a kagome staircase. Phys Rev Lett, 2004, 93:247201.
  • 5Lawes G, Harris A B, Kimura T, et al. Magnetically driven ferroelectric order in Ni3V2O8. Phys Rev Lett, 2005, 95:087205.
  • 6Kimura T, Goto T, Shintani H, et al. Magnetic control of ferroelectric polarization. Nature, 2003, 426: 55- 58.
  • 7Goto T, Lawes G, Ramirez A P, et al. Electricity and giant magnetocapacitance in perovskite rare-earth manganites. Phys Rev Lett, 2004, 92:257201.
  • 8Arima T, Goto T, Yamasaki Y, et al. Magnetic-field-induced transition in the lattice modulation of colossal magnetoelectric GdMnO3 and TbMnO3 compounds. Phys Rev B, 2005, 72: 100102(R).
  • 9Hemberger J, Schrettle F, Pimenov A, et al. Multiferroic phases of Eu1-xYxMnO3. Phys Rev B, 2006, 75:035118.
  • 10Yamosoki Y, Sagayama H, Goto T, et al. Electric control of spin helicity in a magnetic ferroelectric. Phys Rev Lett, 2007, 98:147204.

共引文献112

同被引文献39

引证文献12

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部