期刊文献+

基于决策树模型的居住建筑人员热舒适预测 被引量:11

Human thermal comfort prediction in residential buildings based on decision tree model
下载PDF
导出
摘要 传统热舒适模型由于确定的变量引入降低了其预测精度,而神经网络等模型由于其复杂的运算规则限制了对模型的解释能力。通过引入分类应用中的经典C&RT决策树方法,对夏热冬冷地区6个城市自由运行居住建筑中的人员热舒适及影响因素和权重进行了预测分析,建立了以城市为第一分类特征的热感觉预测决策树模型,解释了这些因素之间的内部逻辑,并较好地识别了影响热感觉的关键因素,从而为热舒适的预测评价和热环境营造提供了新的方法参考。 The established variables reduce the prediction accuracy of traditional thermal comfort models, while the models such as artificial neural network limit to be explained well due to their complicated operation rules. Presents a typical classification tree--C&RT model to analyse the occupants' thermal comfort and the related influencing factors. Based on the field survey of free-running residential buildings in six cities (Chengdu, Chongqing, Wuhan, Nanjing, Changsha, Hangzhou) in hot summer and cold winter zone, develops a decision tree model of thermal sensation by choosing the city as the first classification feature. The results show that the obtained decision tree model has good performance to identify the key factors affecting on thermal comfort and explain the internal logic between these factors, which provides a new approach for predicting thermal comfort and designing thermal environments.
作者 杜晨秋 李百战 刘红 吴语欣 杜秀媛 Du Chenqiu;Li Baizhou;Liu Hong;Wu Yuxin;Du Xiuyuan
机构地区 重庆大学
出处 《暖通空调》 2018年第8期42-48,80,共8页 Heating Ventilating & Air Conditioning
基金 "十三五"国家重点研发计划项目"长江流域建筑供暖空调解决方案和相应系统"(编号:2016YFC0700301) 国家自然科学基金国际(地区)合作与交流重点项目"基于气候响应和建筑耦合的低碳城市供暖供冷方法与机理研究"(编号:51561135002) "高等学校学科创新引智计划资助"(编号:B13041)
关键词 居住建筑 决策树模型 影响因素 分类特征 热舒适 residential building decision tree model influencing factor classification feature thermal comfort
  • 相关文献

参考文献4

二级参考文献44

  • 1申欢迎,秦萍,董军.环境因素对PMV指标的影响分析[J].制冷与空调(四川),2003,17(4):27-29. 被引量:22
  • 2汪小旵,丁为民,罗卫红,戴剑锋.南方现代化温室能耗预测模型的建立与分析[J].南京农业大学学报,2006,29(1):116-120. 被引量:11
  • 3徐远清,陈祥光,王丽,张启鸿.一种改进的神经网络集成法预测PMV指标[J].北京理工大学学报,2007,27(2):143-147. 被引量:5
  • 4ISO. International standard 7730 moderate thermal environments-determination of the PMV and PPD indices and specification of the conditions for thermal comfort [S]. Geneva: International Standards Organization, 1984.
  • 5Fanger P O. Thermal comfort[M]. Malabar: Kneger Publishing Company, 1982.
  • 6Fluent Inc. Airpak document [M]. Lebanon: Fluent Inc, 2002.
  • 7Niculescu P. Artificial neural networks and genetic algorithms in QSAR[J]. Journal of Molecular Structure, 2003,622(1 - 2) :71 - 83.
  • 8Atthajariyakul S, Leehakpreeda T. Neural computing thermal comfort index for HVAC systems [ J ]. Energy Conversion and Management ,2005,46( 15 ) :2553 - 2565.
  • 9Liu Weiwei, Lian Zhiwei, Zhao Bo. A neural network evaluation model for individual thermal comfort [ J ]. Energy and Buildings, 2007,39(10) :1115- 1122.
  • 10Vapnik V. The Nature of Statistical Learning Theory [ M ]. New York : Springer Verlag, 1999.

共引文献49

同被引文献82

引证文献11

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部