摘要
The sandwich-like structure of reduced graphene oxide/polyaniline (RGO/PANI) hybrid electrode was prepared by electrochemical deposition. Both the voltage windows and electrolytes for electrochemical deposition of PANI and RGO were optimized. In the composites, PANI nanofibers were anchored on the surface of the RGO sheets, which avoids the re-stacking of neighboring sheets. The R(;O/PANI composite electrode shows a high specific capacitance of 466 F/g at 2 mA/cm2 than that of previously reported RGO/PANI composites. Asymmetric flexible supercapacitors applying RGO/PANI as positive electrode and carbon fiber cloth as negative electrode can be cycled reversibly in the high-voltage region of 0-1.6 V and displays intriguing performance with a maximum specific capacitance of 35.5 mF cm^-2. Also, it delivers a high energy density of 45.5 mW h cm^-2 at power density of 1250 mW cm^-2. Furthermore, the asymmetric device exhibits an excellent long cycle life with 97.6Z initial capacitance retention after 5000 cycles. Such composite electrode has a great potential for applications in flexible electronics, roll-up display, and wearable devices.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
The sandwich-like structure of reduced graphene oxide/polyaniline (RGO/PANI) hybrid electrode was prepared by electrochemical deposition. Both the voltage windows and electrolytes for electrochemical deposition of PANI and RGO were optimized. In the composites, PANI nanofibers were anchored on the surface of the RGO sheets, which avoids the re-stacking of neighboring sheets. The R(;O/PANI composite electrode shows a high specific capacitance of 466 F/g at 2 mA/cm2 than that of previously reported RGO/PANI composites. Asymmetric flexible supercapacitors applying RGO/PANI as positive electrode and carbon fiber cloth as negative electrode can be cycled reversibly in the high-voltage region of 0-1.6 V and displays intriguing performance with a maximum specific capacitance of 35.5 mF cm^-2. Also, it delivers a high energy density of 45.5 mW h cm^-2 at power density of 1250 mW cm^-2. Furthermore, the asymmetric device exhibits an excellent long cycle life with 97.6Z initial capacitance retention after 5000 cycles. Such composite electrode has a great potential for applications in flexible electronics, roll-up display, and wearable devices.2017 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
基金
supported by the Qing Lan Project of Jiangsu Province
the Natural Science Foundation of Jiangsu Province (BK20161289)
the Natural Science Foundation of Higher Education of Jiangsu Province (17KJB610009)
the Research Innovation Program for College Graduates and Students of Jiangsu Province (KYZZ15 0043)
the Foundation of Nantong Vocational University (1512102)
the College Students Innovation and Entrepreneurship Training Program of Jiangsu Province (201612684001Y)
333 Talents Program of Jiangsu Province (BRA2016195)