期刊文献+

融合用户兴趣与信任的微博推荐 被引量:2

Microblog Recommendation Based on Interests and Trust
下载PDF
导出
摘要 在微博社交网络中,微博用户每天针对热门新闻、事件等生成众多微博内容,导致用户在大量内容中找到自己真正感兴趣的信息非常困难。因此,系统向用户推荐其感兴趣的微博,是改善用户体验的重要途径。提出一种新的模型因子分解机FM,以及综合考虑用户兴趣与信任因素的预测方法ITFM,以提高个性化微博推荐质量。通过在真实的数据集上进行模拟实验,结果表明,所提出的微博推荐方法在一定程度上提高了微博推荐准确度。ITFM方法能够有效解决信息过载问题,对改善用户体验具有较好的理论和实际意义。 Microblog users generate numerous microblog contents based on breaking news and latest events every day.However,it is difficult to find information of interest from these contents.Recommending interesting microblogs from the Microblog system is an important way to improve user experience.In this light,we build a model called ITFM,which combines factorization machines together with user interests and trust factors to improve the quality of personalized microblogging recommendations.Through simulations on real data sets,results show that the proposed Microblog recommendation approach improves the accuracy to some extent.ITFM can effectively deal with the information overload problem,and our work has better theoretical and practical significance for improving user experience.
作者 高晓波 方献梅 GAO Xiao-bo,FANG Xian-mei(College of Computer and Information Engineering,Hechi University,Yizhou 546300,Chin)
出处 《软件导刊》 2018年第8期49-52,共4页 Software Guide
基金 广西高校中青年教师基础能力提升项目(2017KY0574)
关键词 微博推荐 信任 ITFM Microblog recommendation trust ITFM
  • 相关文献

参考文献2

二级参考文献20

  • 1Patricia SendalI, Wcndy Ceccucci, Alan R Pcslak. Got Web 2.0? A review of Web 2.0 tools for the information systems curriculum [ J]. Information Systems Education Journal, 2010, 8(28) :1-14.
  • 2GigaTweet. Counting the number of tweets[ EB/OL ]. http:// popacular, com/gigatwect, 2010 August.
  • 3Carmen Holotcscu, Gabriela Orosscck. Using rnicroblogging in education case study: Cirip. ro[ C]. 6th International Conference one-Learning, 2009.
  • 4Shen Yang, Li Shu-chen, Ye Xiao-xiao, et al. Content mining and network analysis of microblog spare [J]. Journal of Convergence Information Technology, 2010, 5 ( 1 ) : 135-140.
  • 5Hong Liang-jie, Brian D Davison. Empirical study of topic modeling in twitter[ C]. Proceedings of the SIGKDD Workshop on Social Media Analytics (SOMA) at KDD, 2010.
  • 6Barabasi A-L, Albert R. Emergence of scaling in random networks [J]. Science, 1999, 286(5439) : 509-512.
  • 7Watts D J, Strogatz S H. Collective dynamics of "small-world" networks[ J]. Nature, 1998, 393 : 440-442.
  • 8Saaty T L. Theory and applications of the analytic network process [M]. Pittsburgh: RWS Publications, 2005.
  • 9Saaty T L. Decision making with the analytic hierarchy process [J]. International Journal of Services Sciences,2008,1 ( 1 ) :83-98.
  • 10Weng Jian-shu, Lim Ee-peng, Jiang Jing, et al. TwitterRank: finding topic-sensitive influential twitterers [ C ]. In WSDM' 10: Proceedings of the Third ACM International Conference on Web Search and Data Mining, 2010: 261-270.

共引文献32

同被引文献21

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部