期刊文献+

基于HBase的支持频繁更新与多用户并发的R树 被引量:6

R-tree for Frequent Updates and Multi-user Concurrent Accesses Based on HBase
下载PDF
导出
摘要 基于位置服务的应用已经进入大数据时代,传统基于位置服务的技术面临系统扩展性、性能等方面的挑战。云计算技术是大数据处理的基础,索引是优化查询的重要手段。尽管目前已存在大量的研究成果,但尚未有HBase上的支持频繁更新与多用户并发的R树索引。针对移动对象索引的频繁更新与多用户并发的需求,文中提出了基于HBase的支持频繁更新与多用户并发的R树索引,它只索引包含移动对象的网格,避免了频繁更新问题;进一步基于HBase的数据行与数据分区的组织与读写特性,对R树的节点进行重组,并对网格Z-order编码,从而减少了对HBase的读写操作,提高了查询效率;最后提出了基于ZooKeeper分布式读写锁的优化策略,提高了索引的吞吐量。实验结果表明,与网格索引相比,在数据非均匀的情况下,所提策略的查询吞吐量提高了25%~50%,更新吞吐量约在同一数量级;与分布式共享锁索引相比,分布式读写锁索引的吞吐量提高了近40%。 Application based on location based service(LBS)has entered the era of big data.Traditional location based service techniques face new challenges such as scalability,performance,etc.Cloud computing technology is the basis of big data processing and index is an important way to optimize query.Although there exist a large number of research results,as far as we know,there is no R-tree index which supports frequent updates and multi-user concurrent accesses based on HBase.According to the above characteristics of moving objects,this paper proposed a new R-tree index which supports frequent updates and multi-user concurrent accesses based on HBase.In this new index,the R-tree only indexes the grid which contains the moving object to avoide the problem of frequent updating effectively.Furthermore,based on the organization of HBase data rows and I/O characteristics of data partitions,this paper reorganized the nodes and encoded the grid cells with z-order,which reduce the read and write operations of HBase and improve the query efficiency.Finally,it proposed an optimization strategy for distributed read and write locks based on Zookeeper,which improves the throughput of new indexes.The experimental results show that the query throughput of the proposed strategy is improved by 25%~50% and the update throughput is about the same level in the case of uneven data compared with the grid index.Compared with the index using distri-buted shared locks,the query throughput of the index using distributed read and write locks is increased by nearly 40%.
作者 王波涛 梁伟 赵凯利 钟汉辉 张玉圻 WANG Bo-tao;LIANG Wei;ZHAO Kai-li;ZHONG Han-hui;ZHANG Yu-qi(School of Computer Science and Engineering,Northeastern University,Shenyang 110169,China)
出处 《计算机科学》 CSCD 北大核心 2018年第7期42-52,共11页 Computer Science
基金 国家自然科学基金:面向动态位置服务的移动查询处理与优化技术(61173030)资助
关键词 基于位置服务 R树 移动对象索引 HBASE Location based service R-tree Moving object index HBase
  • 相关文献

参考文献2

二级参考文献43

  • 1[OL].<http://hadoop.apache.org.>.
  • 2WinterCorp: 2005 TopTen Program Summary. http:// www. wintercorp, com/WhitePapers/WC TopTenWP. pdf.
  • 3TDWI Checklist Report: Big Data Analytics. http://tdwi. org/research/2010/08/Big-Data-Analytics, aspx.
  • 4Chaudhuri S, Dayal U. An overview of data warehousing and OLAP technology. SIGMOD Rec, 1997,26(1): 65-74.
  • 5Madden S, DeWitt D J, Stonebraker M. Database parallelism choices greatly impact scalability. DatabaseColumn Blog. http://www, databasecolumn, com/2007/10/database-parallelism-choices, html.
  • 6Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters//Proceedings of the 6th Symposium on Operating System Design and Implementation (OSDI ' 04). San Francisco, California, USA, 2004: 137-150.
  • 7DeWitt D J, Gerber R H, Graefe G, Heytens M L, Kumar K B, Muralikrishna M. GAMMA--A high performance dataflow database machine//Proceedings of the 12th International Conference on Very Large Data Bases (VLDB' 86). Kyoto, Japan, 1986:228-237.
  • 8Fushimi S, Kitsuregawa M, Tanaka H. An overview of the system software of a parallel relational database machine// Proceedings of the 12th International Conference on Very Large DataBases(VLDB'86). Kyoto, Japan, 1986:209-219.
  • 9Brewer E A. Towards robust distributed systems//Proceedings of the 19th Annual ACM Symposium on Principles of Distributed Computing (PODC' 00). Portland, Oregon, USA, 2000:7.
  • 10http: //www. dbms2, com/2008/08/26/known-applications of mapreduce/.

共引文献615

同被引文献60

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部