摘要
将小波函数引入支持向量机核函数,同时在支持向量机的学习算法上,引入了改进的粒子群优化算法,使得支持向量机的参数得到最优解,从而建立上市公司财务困境预警模型。实验结果表明,本文提出方法的预测准确率高于普通的小波支持向量机预警模型。
The wavelet function was introduced into the support vector machine kernel function. At the same time, an improved particle swarm optimization algorithm was introduced in the learning algorithm of the support vector machine, so that the optimal solution of support vector machine parameters could be provided to establish a financial distress early warning model for listed companies. The results show that the proposed method is more accurate than the ordinary wavelet support vector machine early warning model.
作者
苗旭东
魏连鑫
MIAO Xudong;WEI Lianxin(College of Science,University of Shanghai for Science and Technology,Shanghai,200093,Chin)
出处
《上海理工大学学报》
CAS
北大核心
2018年第3期211-216,224,共7页
Journal of University of Shanghai For Science and Technology
基金
国家自然科学基金资助项目(11301340)
关键词
小波核函数
支持向量机
粒子群优化算法
wavelet kernel function
support vector machine
particle swarm optimization algorithm