摘要
设A_r为复平面中的圆环{z:r<|z|<1},L_a^2(A_r)为A_r上的Bergman空间.从局部逆的代数结构的新视角研究解析Toeplitz算子的约化子空间.首先证明L_a^2(A_r)上Toeplitz算子T_(z^N)的交换子的表示,再次证明zN的全体局部逆组成的集合在复合映射下是循环群,最后证明了循环群的特征与Toeplitz算子T_(z^N)的极小约化子空间是一一对应的.
Let Arbe the annuls{z:r〈|z|〈1}in the complex plane,La^2(Ar)be the Bergman space on Ar.In this article,the reducing subspaces of analytic Toeplitz operators T(z^N) have been studied from the algebraic structure of local inverses point of view.The commutants of T(z^N) are characterized firstly;and then it shows that the set of local inverses of zNis the cyclic groups of order N under composition;finally it is proved that the minimal reducing subspaces and characters of the cyclic group of the local inverses of zNare one-to-one correspondence.
作者
许安见
邹杨
XU An-jian;ZOU Yang(School of Science,Chongqing University of Technology,Chongqing 400054,China;Department of Mathematics and Information,Chongqing University of Education,Chongqing 400067,China)
出处
《西南师范大学学报(自然科学版)》
CAS
北大核心
2018年第8期32-36,共5页
Journal of Southwest China Normal University(Natural Science Edition)
基金
重庆市自然科学基金项目(CSTC2015jcyjA00045)
国家自然科学基金项目(11501068)