摘要
为了探索奥克托今(HMX)固含量、体系温度、HMX粒度、HMX颗粒级配及功能助剂等对2,4‐二硝基苯甲醚(DNAN)/HMX悬浮液流变性的影响规律,采用数字粘度仪,研究了不同物料状态下DNAN/HMX悬浮体系的表观粘度。结果表明:当HMX固含量为3%时,悬浮液呈现牛顿流体特性;HMX固含量为12%~30%时,该悬浮液表观粘度可用Ostwald‐de Waele模型进行描述,非牛顿指数n值从0.842降低到0.374。95~116℃时,温度对表观粘度的影响可以用Arrhenius方程描述,活化能Ea从25.97 k J?mol^(-1)增加到30.17 k J?mol^(-1)。表观粘度随着粒度的增大而降低,当粒度为999.5μm与粒度为132.6μm的颗粒级配比为2∶1时,表观粘度达到最小值,且固含量可达80%。功能助剂N‐甲基‐4‐硝基苯胺(MNA)、三‐(β氯乙基)磷酸酯(CEF)降低了悬浮液的表观粘度,而脱水山梨醇单硬脂酸酯聚氧乙烯醚(吐温60)、微晶蜡‐80(MV80)、乙酸丁酸纤维素(CAB)、热塑性聚氨酯‐5702(TPU5702)提高了悬浮液的表观粘度。
To explore the influence rule of octogen(HMX)solid content,system temperature,HMX particle size,HMX particle gradation and functional additives etc.on the rheological properties of 2,4-dinitroanisole(DNAN)/HMX suspensions,the apparent viscosity of DNAN/HMX suspensions under different material state conditions was investigated by a digital viscometer. Results show that the suspension presents Newtonian fluid characteristics when the solid content is 3%. Apparent viscosity of the suspension can be described with Ostwald-de Waele model when the HMX solid content is 12%-30%,and the value of nonNewton index n is decreased from 0.842 to 0.374. The influence of temperture on the apparent viscosity can be described by the Arrhenius equation when the temperture is in the range of 95-116 ℃,and the activation energy Eaincreases from 25.97 k J?mol-1 to 30.17 kJ·mol^-1. The apparent viscosity decrases as the particle size increases. When the particle gradation ratio of 999.5 μm particle size to 132.6 μm is 2∶1,the apparent viscosity reaches the minimum and the solid content is up to 80%. Functional additives N-methyl-4-nitroaniline(MNA)and tri(β chloroethyl)phosphate(CEF)make the apparent viscosity of the suspensions decrease,while dehydrated sorbitol monostearate polyoxyethylene ether(Tween 60),microcrystalline wax-80(MV80),cellulose acetate butyrate(CAB),and thermoplastic polyurethane-5720(TPU 5720)make the the apparent viscosity of the suspensions increase.
作者
蒙君煚
周霖
金大勇
曹少庭
王亲会
MENG Jun-jiong;ZHOU Lin;JIN Da-yong;CAO Shao-ting;WANG Qin-hui(Xi' an Modern Chemistry Research Institute,Xi' an 71 0065,China;State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing 100081,China)
出处
《含能材料》
EI
CAS
CSCD
北大核心
2018年第8期677-685,共9页
Chinese Journal of Energetic Materials