摘要
利用条件函数依赖能有效地对数据库进行检测和修复。但是面对大量且复杂的数据时,传统的条件函数依赖算法存在检测和修复速率慢,查找效率低等问题。以水利普查数据为研究对象,利用其复杂且庞大的特点,在原有的算法上引入一致集简化计算差集的过程,并根据深度优先的搜索策略搜索属性集的最小覆盖。改进后的算法相比传统的挖掘算法在保证搜索质量的前提下加快了搜索速率,并提高了复杂数据的挖掘效率。
The conditional function dependencies can effectively detect and repair the database. But when faced with a large amount of complex data, the traditional conditional function dependency algorithm has the problems of slow detection and repair,low search efficiency and so on. The census data of water conservancy as the research object,it used the large and complex characteristics,and using consistent set simplified calculation of difference set based on original algorithm,according to depth first search the minimal covers. The improved algorithm speeds up the search speed and improves the mining efficiency of complex data under the premise of guaranteeing the search quality compared with the traditional mining algorithm.
作者
谭黎龙
万定生
钱振兴
TAN Li-long;WAN Ding-sheng;QIAN Zhen-xing(School of Computer and Information,Hohai University,Nanjing 211100,China;Huawei Research Institute of Nanjing,Nanjing 211100,China)
出处
《信息技术》
2018年第7期1-4,10,共5页
Information Technology
基金
国家科技支撑计划课题(2015BAB07B01)
水利部公益性行业科研专项(201501022)
关键词
搜索算法
条件函数依赖
水利普查
深度优先
最小覆盖
search algorithm
conditional function dependencies
water survey
depth first
minimal covers