期刊文献+

基于强化深度特征融合的行人再识别算法研究 被引量:3

Pedestrain re-identification based on reinforced deep feature fusion
下载PDF
导出
摘要 行人再识别指的是在非重叠的多摄像头下匹配行人目标,通常由特征表示和度量学习两个部分组成。文中针对特征表示进行研究,提出一种新的行人再识别特征提取算法,在深度学习特征的基础上加入了基于人体结构检测的多分类特征,建立了强化深度特征的多特征融合模型。经过对深度学习特征的强化训练,文中得到一种描述性更强、更有效的融合特征,并且在多个公开数据集上有很高的识别率。 Pedestrain re-identification refers to the matching of pedestrian targets in non-overlapping multi-cameras,which is usually composed of feature representation and metric learning. This paper focuses on the former,and proposes a novel feature extraction algorithm of pedestrain re-identification.By adding multi-classification features based on human body structure to the convolutional neural network(CNN) features,it proposes a reinforced deep feature fusion algorithm. Through the reinforcement of CNN features,it obtains a more descriptive and effective fused feature,and gets high recognition rate on many public data sets.
作者 李佳丽 郭捷 LI Jia-li;GUO Jie(School of Cyber Security,Shanghai Jiaotong University,Shanghai 200240,Chin)
出处 《信息技术》 2018年第7期15-19,共5页 Information Technology
基金 国家重点研发项目(2017YFB1002401)
关键词 行人再识别 卷积神经网络 人体结构检测 特征融合 pedestrain re- identilication convolutional neural network human body structure detection feature fusion
  • 相关文献

同被引文献20

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部