期刊文献+

基于多特征的Android移动设备恶意代码检测

Multi-features-based malware code detection for Android mobile devices
下载PDF
导出
摘要 目前基于机器学习的Android移动应用恶意代码检测技术侧重于对单一特征进行检测分析,不能充分利用多类特征对Android恶意代码检测所起的作用、不能充分使用不同机器学习算法对某类行为特征的最优算法。文中采用了基于行为的静态检测技术,通过数据挖掘算法选取三类特征,使用多特征融合模型来识别Android恶意应用,准确率更高、误报率更低。 At present,malware code detection for Android mobile application based on machine learning focuses on single feature. While single feature could not make the best of multi-class features in Android malware code detection. The paper adopted the static detection technology based on behavior,handled three classes of features through the data mining algorithm and used multi-class features fusion model to identify unknown Android malware with higher accuracy and lower FP rate.
作者 程凡铭 夏洪山 CHENG Fan-ming;XIA Hong-shan(Schoogl of Civil Aviation,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)
出处 《信息技术》 2018年第7期65-69,73,共6页 Information Technology
基金 国家自然科学基金资助项目(60672167)
关键词 多特征 恶意代码检测 ANDROID应用 移动设备 机器学习 特征融合 multi-class features mal icious code detection Android application mobile devices machine learning features fusion
  • 相关文献

参考文献4

二级参考文献62

  • 1杨欢,张玉清,胡予濮,刘奇旭.基于权限频繁模式挖掘算法的Android恶意应用检测方法[J].通信学报,2013,34(S1):106-115. 被引量:47
  • 2Gartner. Worldwide smartphone sales in Q3 2013 [EB/OL]. [ 2014- 01-08 ]. http://www, gartner, com/newsroom/id/ 2623415.
  • 3AppBrian Stats. Number of available Android applications [EB/OL]. [2014-01-08]. http://www, appbrain, com/stats/.
  • 4Consumer Reports. Keep your phone safe-How to protect yourself from wireless threat [EB/OL].[ 2014-01-08 ]. http ://www. eonsumerreports, org/ero/net0613, htm # info.
  • 5TrustGo. BSides Las Vegas: Your droid has no clothes [EB/OL]. [2014-01-08]. http://blog, trustlook, corn/.
  • 6National Vulnerability Database. Vulnerability summary for eVE 2012-0056 [EB/OL]. [2013-12-09]. http..//web, nvd. nist. gov[view]vulnldetail?vulnId=CVE-2012-OO56&cid= 2.
  • 7Nakamura Y, Sameshima Y. SELinux for electronics devices [C]//Proe of Linux Symp. Ottawa:Linux Symp Inc, 2008: 125-133.
  • 8Bugiel S, Davi L, Dmitrienko A, et al. Practical and lightweight domain isolation on android [C] //Proc of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices. New York: ACM, 2011:51-62.
  • 9Smalley S, Craig R. Security enhanced (SE) Android: bringing flexible MAC to Android [C/OL] //Proc of the 20th Annual Network and Distributed System Security Syrup. 2013 [2014-03-20]. http://www, internetsociety, org/events/ ndss-symposium- 2013 / papers-and- pr esentations.
  • 10Kim S H, Han D, Lee D H. Predictability of Android OpenSSL's pseudo random number generator [C] //Proc of the 2013 ACM SIGSAC Conf on Computer Communications Security. New York: ACM, 2013:659-668.

共引文献193

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部