期刊文献+

自适应调节学习率和样本训练方式的场景分类 被引量:7

Scene Classification with Adaptive Learning Rate and Sample Training Mode
下载PDF
导出
摘要 在基于卷积神经网络的场景分类方法中,当训练数据较少时,由于网络训练次数较多、收敛性较差等原因,容易造成过拟合.为了消除此影响,在卷积神经网络的框架下,文中提出可以自适应调节网络学习率和样本训练方式的场景分类算法.根据网络训练中误差函数的变化自适应调节学习率,当误差函数变化较小时,保持批次的学习率不变,当误差函数变化加大时,学习率的变化与误差函数的改变成反比.同时根据网络输出结果改变实验样本的训练方式,着重训练分类不准确的图像.在Scene-15、Cifar-10场景数据集上的实验表明,文中算法改善神经网络的收敛性,有效提高分类精度,特别是对于室内场景等特征复杂场景的分类精度. In scene classification based on convolutional neural network, over-fitting is caused due to the large number of network training and poor convergence performance with the small training dataset. To eliminate the negative effect, an algorithm for scene classification with adaptive learning rate and sample training mode is proposed. The network learning rate is adaptively adjusted on the framework of convolutional neural network according to the variation of the error function in the network training. When the error function changes slightly, the learning rate of the batch is unchanged. When the error function changes more remarkably, the variation of the learning rate is inversely proportional to the variation of the error function. Meanwhile, according to the network output, the sample training mode is switched, and the inaccurately recognized images are emphatically trained. The experimental results on Scene-15 and Cifar-10 scene datasets show that the proposed method improves the convergence of neural networks and effectively improves the classification accuracy, especially the classification accuracy of complex scenes such as indoor scenes.
作者 储珺 苏亚伟 王璐 CHU Jun;SU Yawei;WANG Lu(Institute of Computer Vision,Nanchang Hangkong University,Nanchang 330063;School of Information Engineering,Nanchang Hangkong Uni- versity,Nanchang 330063)
出处 《模式识别与人工智能》 EI CSCD 北大核心 2018年第7期625-633,共9页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61663031 61661036) 江西省重点研发计划项目(No.20161BBE50085)资助~~
关键词 场景分类 卷积神经网络 自适应学习率 自适应样本训练 Scene Classification Convolutional Neural Network Adaptive Learning Rate Adaptive Sample Training
  • 相关文献

参考文献2

二级参考文献93

  • 1Sivic J, Zisserman A. Video google: a text retrieval approach to object matching in videos [ C ] //Proceedings of International Conference on Computer Vision. Washington DC: [ s. n. ], 2003,1470-1477.
  • 2Jurie F, Triggs B. Creating efficient codebooks for visual recogni- tion [ C ]//Proceedings of International Conference on Computer Vision. Beijing: [s. n. ], 2005: 604-610.
  • 3Lazebnik S, Schmid C. Beyond bags of features : spatial pyramid matching for recognizing natural scene categories [ C ]//Procee- dings of IEEE Conference on Computer Vision and Pattern Recog- nition. New York: IEEE, 2006, 2:2169-2178.
  • 4Oliva A, Torralba A. Modeling the shape of the scene a holistie representation of the spatial envelope [ J ]. International Journal in Computer Vision, 2001,42(3) : 145-175.
  • 5Oliva A, Torralba A. Building the gist of a scene: the role of global image features in recognition [ J ]. Progress in Brain Research : Visual Perception, 2006, 155 : 23-36.
  • 6Muller K R, Mika S, Ratsch G, et al. An introduction to kernel based learning algorithms [ J]. IEEE Transactions on Neural Net- works, 2001, 12(2) : 181-201.
  • 7Hofman T, Sch~lkopf B. Kernel methods in machine learning [J]. The Annals of Statistics, 2008, 36(3) : 1171-1220.
  • 8Vapnik V N. Statistical Learning Theory [ M ]. New York: Wiley, 1998.
  • 9Scholkopf B, Smola A J. Learning with Kernels [ M ]. Massa- chusetts: The MIT Press, 2002.
  • 10Daugman J. Uncertainty relation for resolution in space, spatial, frequency, and orientation optimized by two-dimensional visual cortical filters [ J]. Journal of the Optical Society of America, 1985, 2(7) : 1160-1169.

共引文献350

同被引文献56

引证文献7

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部