期刊文献+

三维石墨烯复合普鲁士蓝材料的简易水热法合成及储钠性能(英文) 被引量:1

Prussian Blue Embedded into Three-Dimensional Graphene Network Prepared by a Simplified Hydrothermal Method and Its Performance as Superior Sodium-Ion Battery Cathode
下载PDF
导出
摘要 利用石墨烯包覆修饰提高普鲁士蓝(PB)的导电性是一种有效的改善其较差的储钠性能的方法。然而,由于普鲁士蓝的热稳定性极差,此方法一直无法得到很好的应用。因此,一种创新的低温水热合成法被提出,用于合成一种新型、具有三维导电网络的普鲁士蓝/石墨烯复合材料(PB-rGO)。在低温水热过程中,抗坏血酸作为还原剂可以有效还原氧化石墨烯,同时,普鲁士蓝与石墨烯通过自组装形成复合材料;扫描电显微镜测试显示,该种复合材料具有独特的三维石墨烯导电网络结构。当作为钠离子电池正极材料时,该种普鲁士蓝/石墨烯复合材料表现出了优异的电化学性能。在电流密度为50C时比容量仍可达到61mAh/g;在电流密度为5C时循环1000圈后容量保持率仍达到85.1%,因此具有很好的应用前景。 Enhancing the electronic conductivity of Prussian blue(PB)by graphene decoration is an effective method to improve its sodium storage performance.However,this method suffers from the extremely poor thermal stability of PB nanocubes.For this purpose,Prussian blue embedded in three-dimensional graphene network(PB-rGO)has been synthesized via a facile,low temperature hydrothermal method.The ascorbic acid was used as reducing agent in the low temperature hydrothermal synthesis process and the reduced graphene associated with Prussian blue nanocubes were self-assembled into a black hydrogel.After freeze-drying treatment,the graphene aerogel with Prussian blue nanocubes wrapped displays unique 3D structure SEM results,which provide a continuous electron conductive network.When it utilized as the cathode of sodium ion battery(SIB),the PB-rGO exhibits enhanced performance with a high specific capacity of 61 mAh/g at the current density of 50 C.It even shows excellent cyclability with 85.1%capacity retention over 1000 cycles at the current density of 5C.
作者 龚纯 GONG Chun(Wuhan University of Technology,Wuhan 430070,Chin)
机构地区 武汉理工大学
出处 《石油学报(石油加工)》 EI CAS CSCD 北大核心 2018年第4期843-848,共6页 Acta Petrolei Sinica(Petroleum Processing Section)
关键词 普鲁士蓝 钠离子电池 水热合成法 三维石墨烯网络 Prussian blue sodium ion battery hydrothermal method 3D graphene network
  • 相关文献

参考文献1

二级参考文献12

  • 1NAZEERUDDIN M K, BARAN OFF E, GRATZEL M. Dye-sensitized solar cells: A brief overview[J]. Solar Energy, 2011, 85(6): 1172-1178.
  • 2O'REGAN B, GRATZEL M. A low-cost, high?efficiency solar cell based on dye-sensitized colloidal TiO, films[J]. Nature, 1991, 353(24): 737-740.
  • 3NAZEERUDDIN M K, KAY A, RODICIO I, et al. Conversion of light to electricity by cis- X2 bis (2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= cr , Br-, 1-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes[J]'Journal of the American Chemical Society, 1993, 115(4): 6382-6390.
  • 4NAZEERUDDIN M K, PECHY r. RENOUARD T, et al. Engineering of efficient panchromatic sensitizers for nanocrystalline Ti02-based solar cells[J].Journal of the American Chemical Society, 2001, 123(8): 1613-1624.
  • 5NAZEERUDDIN M K, De A F, FANTACCI S, et al. Combined experimental and DFT- TDDFT computational study of photoelectrochemical cell ruthenium sensitizers[J].Journal of the American Chemical Society, 2005, 127(48): 16835-16847.
  • 6BESSHO T, ZAKEERUDDIN S M, YEH C v ; et al. Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins[J]' Angewandte Chemie International Edition, 2010, 49 (37): 6646-6649.
  • 7SAUVAGE F, DECOPPETJ D, ZHANG M, et al. Effect of sensitizer adsorption temperature on the performance of dye-sensitized solar cells[]].Journal of the American Chemical Society, 2011, 133(24): 9304-9310.
  • 8YELLA A, LEE H W, TSAO H N, et al. Porphyrin?sensitized solar cells with cobalt ( II / III )-based redox electrolyte exceed 12 percent efficiency[]]. Science, 2011, 334(6056): 629-634.
  • 9WEI Y S,]IN Q Q, REN T Z. Expanded graphite/ pencil-lead as counter electrode for dye-sensitized solar cells[J]. Solid-State Electronics, 2011, 63(1): 76-82.
  • 10]IN Q Q, ZHU X H, XING X v , et al. Adsorptive removal of cationic dyes from aqueous solutions using graphite oxide[]]. Adsorption Science &- Technology, 2012, 30(5): 437-448.

共引文献1

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部