期刊文献+

新安江模型与水箱模型在柘溪流域适用性研究 被引量:15

Application of Xin'anjiang Model and Tank Model in Zhexi Basin
下载PDF
导出
摘要 为提高柘溪流域洪水预报精度,充分合理利用洪水资源,缓解该流域下游的防洪压力,同时为水库防洪调度以及经济运行提供科学合理的决策依据,研究了集总式概念性水文模型新安江模型及水箱模型在该湿润流域的适用性。选取该流域2004~2015年实测数据,应用三目标MOSCDE算法分别优选三水源新安江模型以及水箱模型参数,从而对该流域划分的多个子流域单元进行了场次洪水模拟计算,并对比分析不同流域单元两种模型的模拟结果,探究不同模型结构在柘溪流域场次洪水模拟中的差异,分析总结这两种模型在该流域的适用性。结果表明:两种模型模拟效果比较接近,均可以达到《水文情报预报规范》规定的作业预报精度要求,且对于流域内的大洪水的模拟效果也比较理想。从洪量以及洪水过程方面分析,两个模型的模拟效果比较接近;从洪峰拟合角度分析,新安江模型比水箱模型更适合该流域。 In order to increase the accuracy of flood estimation, take full advantage of flood water resources, and relieve the flood pressure in the downstream of the Zhexi River, a suitable flood simulation model is needed to provide science and reasonable references for reservoir flood control. This paper studied the application of the Xin'anjiang model and Tank model in this basin. The multi-objective optimal algorithm of MultiObjective Shuffled Complex Differential Evolution(MOSCDE) was used to calibrate the model parameters of these two hydrology models. The results indicate that the two models work well at rainfall-runoff process simulation, especially for high flow flood events. The results also show that the Xin'anjiang model slightly outperforms than Tank model in flood peak as well they are similar to perform well at flood volume and the hydrograph of flood.
作者 孙娜 周建中 张海荣 葛乐壮 SUN Na;ZHOU Jianzhong;ZHANG Hairong;GE Lezhuang(College ofHydropower & Information Engineering,Huazhong University of Science & Technology,Wuhan 430074;Hubei Key Laboratory of Digital Valley Science and Technology,Huazhong University of Science and Technology,Wuhan 430074,China)
出处 《水文》 CSCD 北大核心 2018年第3期37-42,共6页 Journal of China Hydrology
基金 国家自然科学基金面上项目(51579107) 国家自然科学基金重大研究计划重点项目(91547208) 国家自然科学基金重点项目(51239004)
关键词 新安江模型 水箱模型 柘溪流域 洪水模拟 多目标参数率定 Xin'anjiang Model Tank Model Zhexi Basin flood simulation multi-objective parameter calibration
  • 相关文献

参考文献7

二级参考文献27

  • 1李致家,周轶,哈布.哈其.新安江模型参数全局优化研究[J].河海大学学报(自然科学版),2004,32(4):376-379. 被引量:35
  • 2焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1996..
  • 3[12]Storn R,Price K.Differential evolution-a simple and efficient heuristic for global optimization over continuous space.Journal of Global Optimization,1997,11(4):341-359.
  • 4[13]Storn R,Price K.Minimizing the real functions of the ICEC'96 contest by differential evolution//IEEE Conference on Evolutionary Computation,Nagoya,Japan,1996:842-844.
  • 5[15]Storn R.Designing nonstandard filters with differential evolution.IEEE Signal Processing Magazine,2005,22(1):103-106.
  • 6[2]Dayhoff J E,Deleo J M.Artificial neural networks[J].Cancer,2001,9l(8):1615-1634.
  • 7VIJAY P S. Compuer models of watershed hydrology[M]. Highlands Ranch:Water Resources Publication, 1995:23-68.
  • 8DUAN Q, GUPTA V K, SOROOSHIAN S. Shuffled complex evolution approach for effective and efficient global minimization[J]. Journal of Optimization Theory and Applications, 1993,76(3) :501-521.
  • 9DUAN Q, SOROOSHIAN S, GUPTA V K. Optimal use of the SCE-UA optimization method for calibrating watershed models[J]. Journal of Hydrology, 1994,158 : 265-284.
  • 10ECKHARDT K, AMOLD J G. Automatic calibration of a distributed catchment model[J]. Journal of Hydrology, 2001,251 : 203-209.

共引文献416

同被引文献180

引证文献15

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部