期刊文献+

基于改进的和声搜索算法的特征基因选择 被引量:4

Feature Gene Selection Based on Improved Harmony Search Algorithm
下载PDF
导出
摘要 针对基因表达谱高维、小样本、高噪声及高冗余等特点,提出一种基于改进的和声搜索算法的特征基因选择方法。首先,采用Kruskal-Wallis算法对原始基因进行初选,降低和声算法搜索空间维数,保证和声搜索算法的优化精度和收敛速度;然后,针对和声搜索算法易陷入局部最优问题,对当前种群中最优、最差和声分别进行进化;同时融合教与学优化算法中个体更新方式,设计一种改进的和声搜索算法实现特征基因选择。仿真实验结果表明,方法在优化精度、时间效率和稳定性等方面优于HS、IHS、EHS和GHS等算法。 A feature gene selection method was proposed based on improved harmony search algorithm aiming at the characters of high-dimension,small samples,high noise and high redundancy of gene expression profile. Firstly,Kruskal-Wallis algorithm is used to select the some genes in order to reduce the dimension of the search space and guarantee the optimization precision and convergence speed of harmony search algorithm. Then,the optimal and the worst harmonics are evolved respectively and the updating approach of individual in teaching-learning-based optimization is integrated to harmony search algorithm at the same time. Simulation results show that the proposed method outperforms HS and improved algorithms,such as IHS,EHS and GHS in terms of optimization accuracy,time efficiency and stability.
作者 陈涛 CHEN Tao(School of Mathematics and Computer Science,Shaanxi University of Technology,Hanzhong 723000,China)
出处 《科学技术与工程》 北大核心 2018年第17期204-210,共7页 Science Technology and Engineering
基金 国家自然科学基金(11502132) 陕西省教育厅科研基金(16JK1149) 陕西理工大学科研基金(SLGQD2017-07)资助
关键词 基因表达谱 特征基因 和声搜索算法 Kruskal-Wallis gene expression profile featiure gene harmony search algorithm Kruskal-Wallis
  • 相关文献

参考文献5

二级参考文献109

  • 1吴亮红,王耀南,周少武,袁小芳.双群体伪并行差分进化算法研究及应用[J].控制理论与应用,2007,24(3):453-458. 被引量:47
  • 2Golub,T.R.,et al.1999.Molecular classification of cancer:class discovery and class prediction by gene expression monitoring.Science 286:531-537.
  • 3Alon,U.,et al.1999.Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays.Proc.Natl.Acad.Sci.USA 96:6745-6750.
  • 4Dougherty,E.R.2001.Small sample issues for microarray-based classification.Comp.Funct.Genomics 2:28-34.
  • 5Xing,E.P.,et al.2001.Feature selection for highdimensional genomic microarray data.In Proceedings of the 18th International Conference on Machine Learning,pp.601-608.Morgan Kaufmann Publishers Inc.,San Francisco,USA.
  • 6Roth,F.P.2001.Bringing out the best features of expression data.Genome Res.11:1801-1802.
  • 7Guyon,I.,et al.2002.Gene selection for cancer classification using support vector machines.Mach.Learn.46:389-422.
  • 8Inza,I.,et al.2004.Filter versus wrapper gene selection approaches in DNA microarray domains.Artif.Intell.Med.31:91-103.
  • 9Liu,H.,et al.2002.A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns.Genome Inform.13:51-60.
  • 10Su,Y.,et al.2003.RankGene:identification of diagnostic genes based on expression data.Bioinformatics 19:1578-1579.

共引文献46

同被引文献24

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部