期刊文献+

地面运动目标的多UAV协同搜索方法 被引量:6

Multi-UAV cooperative search method for ground moving targets
下载PDF
导出
摘要 对地面运动目标的搜索是无人机(unmanned aerial vehicle,UAV)航路规划的重要研究内容之一,受目标运动的影响,传统的垂线扫描搜索方法对速度较大的运动目标搜索能力不足。为了提升对运动目标的搜索效率,提出多无人机(multi-unmanned aerial vehicle,multi-UAV)并排回寻式搜索方法,以回寻速度与推进距离为参数构建了协同搜索数学模型,搜索效率须在搜索速率和发现概率2个指标之间权衡,通过对模型参数进行优化,得出不同应用场景下的最优搜索方案。仿真结果表明:与垂线扫描搜索法相比,在相同的发现概率下,该方法允许目标的运动速度更快;在目标运动速度相同时,目标发现概率更高。在算例的飞行条件下,目标发现概率比垂线扫描法提高约15个百分点。 The search of ground moving targets is an important research content of unmanned aerial vehicle(UAV)route planning.Because of the motion of the target,the search ability of the traditional vertical scanning method is insufficient.In order to improve the effect of moving target search,an abreast tracing back search method of multiple UAVs is proposed and a collaborative search mathematical model is built taking the back search speed and propulsion distance as parameters.And the search efficiency must be weighed between the two indexes:search speed and discovery probability.By optimizing the model parameters,the optimal search scheme is obtained under different application scenarios.The simulation results show that compared with the vertical scanning search method the optimization strategy allows the target to move faster under the same discovery probability and the optimization strategy has higher discovery probability under the same target moving speed.For the flight condition example,the probability of the target detection of the optimization strategy is about 15 percentage points higher than that of the vertical scanning method.
作者 曾国奇 白宇 林伟 丁文锐 ZENG Guoqi;BAI Yu;LIN Wei;DING Wenrui(Research Institute of Unmanned Aerial Vehicle,Beihang University,Beijing 100191,China;School of Electronics and Information Engineering,Beihang University,Beijing 100191,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2018年第7期1498-1505,共8页 Systems Engineering and Electronics
基金 国家高技术研究发展计划(863计划)(2013AA122103) 中央高校基本科研业务费专项资金(YWF-14-WRJS-005 YWF-15-WRJS-001 YWF-15-GJSYS-061)资助课题
关键词 协同搜索 多无人机 运动目标 航路规划 回寻搜索 cooperative search multi-unmanned aerial vehicles (multi-UAV) motion target route planning search back
  • 相关文献

参考文献6

二级参考文献85

  • 1沈延航,周洲,祝小平.基于搜索理论的多无人机协同控制方法研究[J].西北工业大学学报,2006,24(3):367-370. 被引量:11
  • 2彭辉,沈林成,霍霄华.多UAV协同区域覆盖搜索研究[J].系统仿真学报,2007,19(11):2472-2476. 被引量:40
  • 3田菁,陈岩,沈林成.不确定环境中多无人机协同搜索算法[J].电子与信息学报,2007,29(10):2325-2328. 被引量:34
  • 4Agarwal A, Lim M H. ACO for a new TSP in region coverage[C]// Proc. of the Intelligent Robots and Systems, 2005 = 1717 - 1722.
  • 5Choset H. Coverage for robots-a survey of recent results[J]. Annals of Mathematics and Artificial Intelligence, 2001,31 ( 4 ) : 113 - 126.
  • 6Wagner I A, Ahshuler Y,Yanovski V, et al. Cooperative c|eaners- a study in ant robotics[J]. The International Journal of Robot- ics Research ,2008,27(1) :127 - 151.
  • 7Altshuler Y,Wagner I A,Bruckstein A M. Swarm" ant robotics for a dynamic cleaning problem upper bounds[C]//Proc, of the Autonomous Robots and Agents, 2009 : 227 - 232.
  • 8York G,Pack D J. Ground target detection using cooperative un- manned aerial systems[J]. Journal of Intelligent & Robotic Systems ,2011,65(3) :473 - 478.
  • 9Yang Y, Polycarpou M M, Minai A A. Multi UAV cooperative search using an opportunistic learning method[J]. Journal of Dy- namic Systems ,Measurement,and Control, 2007,12 (9) : 716 - 728.
  • 10Ablavsky V, Stouch D,Snorrason M. Search path optimization for UAV using stochastic sampling with abstract pattern descrip- tors[C]// Proc. of the AIAA Guidance Navigation and Control Conference, 2003 : 36 - 49.

共引文献74

同被引文献42

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部