摘要
地质体材料易发生拉裂,为了有效模拟地质体材料的变形—拉裂过程,自主研发了一种连续—非连续方法。该方法实质是拉格朗日元法与虚拟裂缝模型的耦合,既能较准确模拟应力应变场,又能较准确模拟连续介质向非连续介质转化的复杂过程。以岩样紧凑拉伸试验为例开展变形—拉裂过程研究,得到以下结果。紧凑拉伸岩样的变形—拉裂过程:在岩样的V形缺口尖端附近出现最大主应力集中现象;节点发生分离,虚拟或真实裂缝扩展,最大主应力始终集中于虚拟裂缝的尖端位置;岩样被拉裂成两部分。最大不平衡力发生1次突增对应着1个节点的分离。在峰值之前,岩样的载荷—位移曲线表现出了硬化现象;随着岩样尺寸的增加,应力—应变曲线的峰值有所下降,这与Bazǎnt的尺度律相一致,且峰后应力—应变曲线的陡峭程度增大。目前针对紧凑拉伸试验的模拟结果是合理的,由此在一定程度上说明了提出的连续—非连续方法在连续介质向非连续介质转化模拟方面的突出能力。
Geomaterials are easily subject to tensile cracking. To model effectively deformation-cracking processes of geomaterials, a continuum-discontinuum method is developed, which is a combination of the Lagrangian element method and the fictitious crack method. This method can be used to more accurately model the stress and strain fields and the complex transition process from the continuum medium to the discontinuum medium. To demonstrate the ability of this method, deformation-cracking processes of rock specimens under compact tension are modeled. The following results are found. Deformation-cracking processes of rock specimens under compact tension are as follows: firstly, the concentrated maximum principal stress is observed at the tip of the V-shaped notch; secondly, nodes get separated, fictitious or real cracks extend, and the concentrated maximum principal stress is at the tip of the V-shaped notch all the time; finally, the rock specimen is split to two parts. A rapid increase in the maximum unbalanced force corresponds to a nodal separation. Load-displacement curves exhibit strain-hardening phenomena at pre-peak. The peak of stress-strain curve decreases with an increase of the size of the rock specimen, which is consistent with the scaling law of Bazǎnt. Moreover, the post-peak stress-strain curve becomes steep with an increase of the size of the rock specimen. The present numerical results of rock specimens under compact tension are reasonable, indicating the apparent ability of the present continuum-discontinuum method to model the transition process from the continuum medium to the discontinuum medium.
作者
王学滨
白雪元
祝铭泽
WANG Xuebin;BAI Xueyuan;ZHU Mingze(Institute of Computational Mechanics,Liaoning Technical University,Fuxin 123000,Liaoning,China;College of Mechanics and Engineering,Liaoning Technical University,Fuxin 123000,Liaoning,China)
出处
《地质力学学报》
CSCD
2018年第3期332-340,共9页
Journal of Geomechanics
基金
国家自然科学基金项目(51574144)
关键词
地质体材料
拉裂
岩样
紧凑拉伸
尺度律
虚拟裂缝模型
拉格朗日元法
应力-应变曲线
geomaterials
tensile cracking
rock specimen
compact tension
scaling law
fictitious crack model
the Lagrangian element method
stress-strain curve