期刊文献+

填充式防护结构弹道极限方程的差异演化优化 被引量:1

Differential evolution optimization for stuffed Whipple shield ballistic limit equations
下载PDF
导出
摘要 综合建模形式弹道极限方程中存在11个待定参数,从理论上讲,采用穷举法可以获得其数值大小,但需要的计算时间过长,储存空间巨大,不宜实现,为解决此问题,改用差异演化算法。基于填充式实验数据,采用差异演化算法对综合建模形式弹道极限方程的11个待定参数进行了多目标优化计算。结果显示,方程的总体预测率为82.35%,安全预测率为100%,平均相对误差平方和为0.001 3。该方程对其他来源的49个实验数据的预测结果显示,总体预测率提升了1.32%,安全预测率降低了4.08%,平均相对误差平方和增加了0.007 3,表明差异演化算法适用于解决多参数多目标的弹道极限方程建模问题。 There are 11 parameters in the form of domestic integrated modeling of ballistic limit equations. Theoretically,the exhaustion method can be used to obtain the numerical value,but the computation time is too long and the storage space is huge,so it is not suitable to realize. To solve this problem,differential evolution algorithm is used. Based on the domestic data of stuffed Whipple shield,the differential evolution algorithm is applied to optimize 11 undetermined parameters of the formal ballistic limit equation of the integrated modeling. The optimization results show that the totality predicted rate is 82. 35%,the safety predicted rate is 100%,and the average sum of squared prediction relative errors is 0. 001 3. Based on 49 experimental data from other sources for predictive testing,the prediction test shows that the totality predicted rate is raised by 1. 32%,the safety predicted rate is reduced by 4. 08%,and the average sum of squared prediction relative errors is increased by 0. 007 3. It shows that the differential evolution algorithm is suitable for solving the ballistic limit equation modeling of multiple parameters and multiple targets.
作者 贾光辉 姚光乐 张帅 JIA Guanghui;YAO Guangle;ZHANG Shuai(School of Astronautics,Beijing University of Aeronautics and Astronautics,Beijing 100083,China;Institute of Spacecraft System Engineering,China Academy of Space,Beijing 100094,China)
出处 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2018年第7期1489-1495,共7页 Journal of Beijing University of Aeronautics and Astronautics
关键词 填充式防护结构 弹道极限方程 综合建模 差异演化算法 总体预测率 安全预测率 相对误差平方和 stuffed Whipple shield ballistic limit equation integrated modeling differential evolution algorithm totality predicted rate safety predicted rate sum of squared relative errors
  • 相关文献

参考文献8

二级参考文献63

共引文献50

同被引文献6

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部