摘要
A manifestly covariant, or geometric, field theory of relativistic classical particle-field systems is devel- oped. The connection between the space-time symmetry and energy-momentum conservation laws of the system is established geometrically without splitting the space and time coordinates; i.e., space- time is treated as one entity without choosing a coordinate system. To achieve this goal, we need to overcome two difficulties. The first difficulty arises from the fact that the particles and the field reside on different manifolds. As a result, the geometric Lagrangian density of the system is a function of the 4-potential of the electromagnetic fields and also a functional of the particles' world lines. The other difficulty associated with the geometric setting results from the mass-shell constraint. The standard Euler-Lagrange (EL) equation for a particle is generalized into the geometric EL equation when the mass-shell constraint is imposed. For the particle-field system, the geometric EL equation is further generalized into a weak geometric EL equation for particles. With the EL equation for the field and the geometric weak EL equation for particles, the symmetries and conservation laws can be established geometrically. A geometric expression for the particle energy-momentum tensor is derived for the first time, which recovers the non-geometric form in the literature for a chosen coordinate system.
A manifestly covariant, or geometric, field theory of relativistic classical particle-field systems is devel- oped. The connection between the space-time symmetry and energy-momentum conservation laws of the system is established geometrically without splitting the space and time coordinates; i.e., space- time is treated as one entity without choosing a coordinate system. To achieve this goal, we need to overcome two difficulties. The first difficulty arises from the fact that the particles and the field reside on different manifolds. As a result, the geometric Lagrangian density of the system is a function of the 4-potential of the electromagnetic fields and also a functional of the particles' world lines. The other difficulty associated with the geometric setting results from the mass-shell constraint. The standard Euler-Lagrange (EL) equation for a particle is generalized into the geometric EL equation when the mass-shell constraint is imposed. For the particle-field system, the geometric EL equation is further generalized into a weak geometric EL equation for particles. With the EL equation for the field and the geometric weak EL equation for particles, the symmetries and conservation laws can be established geometrically. A geometric expression for the particle energy-momentum tensor is derived for the first time, which recovers the non-geometric form in the literature for a chosen coordinate system.
基金
This research was supported by the Na- tional Magnetic Confinement Fusion Energy Research Project (Grant Nos. 2015GB111003 and 2014GB124005), the National Natural Science Foundation of China (Grant Nos. NSFC- 11575185, 11575186, and 11305171), JSPS-NRF-NSFC A3 Fore- sight Program (Grant No. 11261140328), the Key Research Pro- gram of Frontier Sciences CAS (QYZDB-SSW-SYS004), Geo- Algorithmic Plasma Simulator (GAPS) Project, and the National Magnetic Confinement Fusion Energy Research Project (Grant No. 2013GB111002B).