摘要
针对电力系统状态估计中全量测存在相关性的实际情况,提出一种计及全量测相关性的混合电力系统状态估计方法。首先,利用无迹变换法计算来自数据采集与监视控制(supervisory control and data acquisition,SCADA)系统量测之间的统计相关性;其次采用量测缓冲器和向量自递归模型(vector autoregressive model,VAR)计及相量测量单元(phasor measurement units,PMU)量测的时空相关性,最终形成两部分相结合的混合线性状态估计方法。该方法在充分考虑PMU量测量之间时相关性的同时,能够确保PMU量测量与基于具有相关性的SCADA量测状态估计结果保持时标的一致性,进而有效地得到计及全量测相关性的电力系统状态估计结果。通过在IEEE-118标准节点系统上进行大量仿真算例分析,结果表明所提方法能够明显提高状态估计结果的精度。
In this paper, a new power system state estimator considering both correlations of SCADA(supervisory control and data acquisition) measurements and PMU(phasor measurement units) measurements is proposed. In particular, utilization of unscented transformation approach is proposed to estimate SCADA measurement correlations while leveraging vector autoregressive model to capture temporal and spatial correlations of PMU measurements. Measurement buffering strategy is presented to solve time skewness between SCADA and PMU measurements. Results of extensive simulation carried out on IEEE-118 bus system demonstrate effectiveness of the proposed approach.
作者
苏蓉
赵俊博
张葛祥
孙华东
SU Rong;ZHAO Junbo;ZHANG Gexiang;SUN Huadong(School of Electrical Engineering,Southwest Jiaotong University,Chengdu 611756,Sichuan Province,China;Department of Electrical and Computer Engineering,Virginia Polytechnic Institute and State University,Falls Church 22043,Virginia,United States of America;State Key Laboratory of Power Grid Safety and Energy Conservation(China Electric Power Research Institute),Haidian District,Beijing 100192,China)
出处
《电网技术》
EI
CSCD
北大核心
2018年第8期2651-2658,共8页
Power System Technology
基金
国家自然科学基金青年基金项目(61702428)~~
关键词
状态估计
无迹变换
相量自递归模型
相关性
state estimation
unscented transformation
vector autoregressive model
correlation