期刊文献+

Three-liquid-phase extraction and separation of V(V) and Cr(VI) from acidic leach solutions of high-chromium vanadium–titanium magnetite 被引量:5

Three-liquid-phase extraction and separation of V(V) and Cr(VI) from acidic leach solutions of high-chromium vanadium–titanium magnetite
下载PDF
导出
摘要 A new method by liquid–liquid–liquid three phase system, consisting of acidified primary amine N1923(abbreviated as A-N1923), poly(ethylene glycol)(PEG) and (NH_4)_2SO_4 aqueous solution, was suggested for the separation and simultaneous extraction of V(V) and Cr(VI) from the acidic leach solutions of highchromium vanadium–titanium magnetite. Experimental results indicated that V(V) and Cr(VI) could be selectively enriched into the A-N1923 organic top phase and PEG-rich middle phase, respectively, while Al(III)and other co-existing impurity ions, such as Si(IV), Fe(III), Ti(IV), Mg(II) and Ca(II) in acidic leach solutions,could be enriched in the(NH_4)_2SO_4 bottom aqueous phase. During the process for extraction and separation of V(V) and Cr(VI), almost all of impurity ions could be removed. The separation factors between V(V) and Cr(VI) could reach 630 and 908, respectively in the organic top phase and PEG middle phase, and yields of recovered V(V) and Cr(VI) in the top phase and middle phase respectively were all above 90%.Various effects including aqueous p H, A-N1923 concentration, PEG added amount and(NH_4)_2SO_4 concentration on three-phase partitioning of V(V) and Cr(VI) were discussed. It was found that the partition of Cr(VI) into the PEG-rich middle phase was driven by hydrophobic interaction, while extraction of V(V) by A-N1923 resulted of anion exchange between NO_3^- and H_2V_(10)O_(28)^(-4). Stripping of V(V) and Cr(VI) from the top organic phase and the middle PEG-rich phase were achieved by mixing respectively with NaNO_3 aqueous solutions and Na OH-((NH_4)_2SO_4 solutions. The present work highlights a new approach for the extraction and purification of V and Cr from the complex multi-metal co-existing acidic leach solutions of high-chromium vanadium–titanium magnetite. A new method by liquid-liquid-liquid three phase system, consisting of acidified primary amine N1923 (abbreviated as A-N1923), poly(ethylene glycol) (PEG) and (NH4)2S04 aqueous solution, was suggested for the separation and simultaneous extraction of Ⅴ(Ⅴ) and Cr(Ⅵ) from the acidic leach solutions of high- chromium vanadium-titanium magnetite. Experimental results indicated that Ⅴ(Ⅴ) and Cr(Ⅵ) could be selectively enriched into the A-N1923 organic top phase and PEG-rich middle phase, respectively, while AI(Ⅲ) and other co-existing impurity ions, such as Si(Ⅳ), Fe(Ⅲ), Ti(Ⅳ), Mg(Ⅱ) and Ca(Ⅱ) in acidic leach solutions, could be enriched in the (NH4)2SO4 bottom aqueous phase. During the process for extraction and separation of Ⅴ(Ⅴ) and Cr(Ⅵ), almost all of impurity ions could be removed. The separation factors between Ⅴ (Ⅴ) and Cr(Ⅵ) could reach 630 and 908, respectively in the organic top phase and PEG middle phase, and yields of recovered Ⅴ(Ⅴ) and Cr(Ⅵ) in the top phase and middle phase respectively were all above 90%. Various effects including aqueous pH, A-N1923 concentration, PEG added amount and (NH4)2SO4 concentration on three-phase partitioning of Ⅴ(Ⅴ) and Cr(Ⅵ) were discussed. It was found that the partition of Cr(Ⅵ) into the PEG-rich middle phase was driven by hydrophobic interaction, while extraction of Ⅴ(Ⅴ) by A-N1923 resulted of anion exchange between NO; and H2V10O4-28. Stripping of Ⅴ(Ⅴ) and Cr(Ⅵ) from the top organic phase and the middle PEG-rich phase were achieved by mixing respectively with NANO3 aqueous solutions and NaOH-(NH4)2SO4 solutions. The present work highlights a new approach for the extraction and purification of V and Cr from the complex multi-metal co-existing acidic leach solutions of high-chromium vanadium-titanium magnetite.
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第7期1451-1457,共7页 中国化学工程学报(英文版)
基金 Supported by the National Basic Research and Development Program of China(973Program No.2013CB632602) the National Natural Science Foundation of China(Nos.51574213,51074150)
关键词 钒钛磁铁矿 分离因素 Cr 抽取 沥滤 高铬 杂质离子 N1923 Three-liquid-phase extraction Vanadium Chromium Separation High-chromium vanadium-titanium magnetite
  • 相关文献

同被引文献97

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部