期刊文献+

复杂背景下的视频前景检测方法研究 被引量:3

Research on Video Foreground Detection in Complicated Background
原文传递
导出
摘要 采用计算机视觉领域的相关算法,研究了如何有效地从监控视频中提取前景目标的问题.在应用中先将视频转换成逐帧图片并依据图片每一像素的灰度值将图形以二维矩阵形式数值化.在此基础上,采用帧差法、背景差法、混合高斯模型、Harris算法与FREAK算法等多种算法,利用Matlab和Python等工具建立不同背景下的相应模型.成功地从包含动态背景、镜头晃动等不同情境的监控视频中检测并提取出前景目标.同时依据不同前景目标的各维度特征信息,利用主成分分析、k-means聚类等机器学习方法构建了判断异常事件发生的算法模型,取得了一定效果. In this paper, the algorithm in the field of computer vision is used to study how to effectively extract the foreground object from the surveillance video. We first convert the video into frame-by-frame pictures and digitize the graphics in a two-dimensional matrix based on the grayscale values of the pixels in the picture. On the basis, we use a variety of algorithms such as frame difference method, background subtraction method, Gaussian mixture model, Harris algorithm and FREAK algorithm, and use Matlab and Python to establish corresponding models under different backgrounds. We succeeded in detecting and extracting the foreground object from the monitoring video with different backgrounds such as dynamic background and lens shake. At the same time, an algorithm model for judging the occurrence of anomalous events is constructed based on the features of each dimension of different foreground targets by using principal other machine learning methods, and achieved component analysis, k-means clustering and some results.
作者 陈震 张紫涵 曾希萌 CHEN Zhen;ZHANG Zi-han;ZENG Xi-meng(College of Economics,Shanghai University,Shanghai 200444,Chin)
出处 《数学的实践与认识》 北大核心 2018年第15期228-240,共13页 Mathematics in Practice and Theory
关键词 数学建模 前景 目标 提取 稳像处理 特征匹配 mathematical modeling foreground target extraction stable processing featurematching
  • 相关文献

参考文献10

二级参考文献95

  • 1刘明,赵孝磊.一种改进的Camshift目标跟踪算法[J].南京理工大学学报,2013,37(5):755-760. 被引量:9
  • 2丁贵广,戴琼海,徐文立.基于兴趣点局部分布特征的图像检索方法[J].光电子.激光,2005,16(9):1101-1106. 被引量:24
  • 3孙君顶,毋小省.基于颜色分布特征的图像检索[J].光电子.激光,2006,17(8):1009-1013. 被引量:11
  • 4赵珊,孙君顶,周利华.基于方块编码的图像纹理特征提取及检索算法[J].光电子.激光,2006,17(8):1014-1017. 被引量:8
  • 5周建新,高科,李锦涛,张勇东,唐胜.图像检索中一种有效的SVM相关反馈算法[J].计算机辅助设计与图形学学报,2007,19(4):535-540. 被引量:10
  • 6Collins R T, Lipton A J, Kanade T. Introduction to the special section on video surveillance. IEEE Transactions on Pattern Analysis and Mazhine Intelligence, 2000, 22(8): 745 - 746
  • 7Hogg D. Model-based vision: a program go see a walking person. Image and Vision Computing, 1983, 1(1): 5-20
  • 8Chain T J, Rehg J M. A multiple hypothesis approach to figure tracking. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Ford Collins, USA: IEEE, 1999. 239-244
  • 9Yilmaz A, Shah S. Recognizing human actions in videos acquired by uncalibrated moving cameras. In: Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China: IEEE, 2005. 150-157
  • 10Cheung G K M, Kanade T, Bouguet J Y, Holler M. A real time system for robust 3D voxel reconstruction of human motions. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, USA: IEEE, 2000. 714-720

共引文献148

同被引文献30

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部