摘要
分析了机载多传感器任务分配问题的特点,建立了机载多传感器任务分配模型。为解决传统粒子群算法存在的局部收敛、收敛较慢等问题,在现有的粒子群算法基础上,调整算法结构与参数,引入方向系数和远离因子来控制粒子远离最劣解的速度和方向,使其在向最优解移动的同时远离最劣解;基于改进后的粒子群算法提出了一种以最大探测概率为目标函数的机载多传感器任务分配方法,并进行了算法仿真。仿真结果表明,算法可以进行有效的任务分配,并能够提升分配效果。
The characteristics of airborne multi-sensor task allocation problem are analyzed, and an airborne multisensor task allocation model is established. In order to solve the problems of local convergence and slow convergence of the traditional Particle Swarm Optimization (PSO) algorithm, the structure and parameters of the existing Particle Swarm Optimization algorithm are adjusted, and the direction coefficient and far away factor are introduced to control the velocity and direction of the particle far away from the worst solution, so that the particle moves away from the worst solution while moving to the optimal solution. Based on the improved Particle Swarm Optimization al- gorithm, an airborne multi-sensor task allocation method is proposed using maximum detection probability as objective function, and the algorithm is simulated. The simulation results show that this algorithm can effectively allocate tasks and improve allocation effects.
作者
史国庆
武凡
张林
张舒杨
郭操
Shi Guoqing;Wu Fan;Zhang Lin;Zhang Shuyang;Guo Cao(School of Electronics and Information,Northwestern Polytechnical University,Xi'an 710072,China;Shenyang Aircraft Design & Research Institute,Shenyang 110035,China)
出处
《西北工业大学学报》
EI
CAS
CSCD
北大核心
2018年第4期722-727,共6页
Journal of Northwestern Polytechnical University
基金
航空科学基金(ASFC-2017ZC53033)资助
关键词
任务分配
机载多传感器
改进粒子群算法
探测概率
task allocation
airborne muhi-sensor
improved particle swarm optimization algorithm
detection probability