期刊文献+

基于波动率分解的期权定价 被引量:6

Option valuation based on volatility decomposition
原文传递
导出
摘要 文章通过将标的资产波动率分解为不相关的两个组成部分,构建了期权定价模型,并求解了相应的期权定价公式.分析新模型在标的资产收益率的偏度与峰度、隐含波动率等方面的重要特征,并利用市场数据对模型进行了拟合.研究表明:将波动率进行分解,以适应于其组件不同的运动过程,从而扩展了模型的适用场景;利用波动率组件的相互作用,即使在波动率参数较低时,也可以令短期期权获得明显的尖峰、波动率微笑等形态特征,从而有效地规避了单因素随机波动率模型的缺陷;同时,通过波动率分解引入新的风险源,模型具有更好的定价效率. Through decomposing the volatility of underlying asset into two uncorrelated components, this article constructs a new option pricing model and resolves the option price formula. After analyzing skewness and kurtosis of underlying asset return, and studying implied volatility of option under the new model, this work calibrates model parameters using the market data. The result of study shows that new model can be suitable for volatility components with different evolution processes, it can generate substantial degree of excess kurtosis and depth of volatility smile even for options with short maturity, and it has more pricing effectiveness by introducing new risk factor.
作者 周仁才 ZHOU Rencai(Department of System Research & Development,Orient Securities Company Limited,Shanghai 200010,China)
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2018年第8期1919-1929,共11页 Systems Engineering-Theory & Practice
关键词 期权定价 随机波动率 波动率分解 偏度与峰度 option pricing stochastic volatility volatility decomposition skewness and kurtosis
  • 相关文献

参考文献3

二级参考文献38

  • 1曾勇,唐小我.期权地位对股票收益分布影响的分析[J].电子科技大学学报,1994,23(2):186-191. 被引量:1
  • 2张世斌,张新生,孙曙光.离散抽样Gamma-OU过程的参数估计[J].中国科学(A辑),2006,36(8):901-927. 被引量:1
  • 3Black F,Scholes M. The pricing of options and corporate liabilities[J].Journal of Political Economy,1973,(03):637-654.
  • 4Cox J,Ross S,Rubinstein M. Option pricing:A simplified approach[J].Journal of Financial Economics,1979.229-263.
  • 5Cherubini U. Fuzzy measure and asset price:Accounting for information ambiguity[J].Applied Mathematical Finance,1997.135-149.
  • 6Yoshida Y. The valuation of European options in uncertain environment[J].European Journal of Operational Research,2003.221-229.
  • 7Wu H C. Pricing European options based on the fuzzy pattern of Black-Scholes formula[J].Computers and Operations Research,2004.1069-1081.
  • 8Yoshida Y,Yasuda M,Nakagami J. A new evaluation of mean value for fuzzy numbers and its application to American put option under uncertainty[J].Fuzzy Sets and Systems,2006.2614-2626.
  • 9Wu H C. Using fuzzy sets theory and Black-Scholes formula to generate pricing boundaries of European options[J].Applied Mathematics and Computation,2007,(01):136-146.
  • 10Yoshida Y. A discrete-time model of American put option in an uncertain environment[J].European Journal of Operational Research,2003.153-166.

共引文献48

同被引文献28

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部