期刊文献+

轴向通流旋转盘腔流动换热的数值研究 被引量:1

Numerical Study of Flow Structure and Heat Transfer in Rotating Cavity with Axial Throughflow
下载PDF
导出
摘要 为了探究旋转盘腔内的流动和换热规律,对轴向通流旋转盘腔进行了非稳态数值模拟,将计算结果与实验数据进行了对比,探究了流动不稳定性的发展过程,分析了盘腔内流动结构和盘面换热特性随旋转雷诺数的变化规律。结果表明:旋转引起的正旋涡从盘罩附近开始发展,随转速的增大而变大,挤压低半径区域的强迫对流区,最终扩展到整个盘腔,盘腔中轴面的涡对数与流动不稳定性的强度有关。上游盘和下游盘的高半径区域换热强度随转速的增大而增强,下游盘低半径区域的换热强度在低转速下由于冲击作用而较强,但该冲击作用随转速的增大而减弱,低半径区域的换热强度也就随之减弱。当旋转雷诺数增大到4.94×105时,下游盘低半径区域受到的冲击作用减小到可以忽略。 To explore the flow and heat transfer rules in the rotating cavity,the unsteady numerical simulation of the axial throughflow rotating cavity was carried out. The calculated results were compared with the experimental value. The development process of flow instability was explored. The change law of flow structure and heat transfer characteristics of the disks with ReΦwere analyzed. The cyclonic circulation whose rotation direction is the same as the disk,caused by rotating create near the shroud,become bigger and compress the forced convection zone in the low radius area,finally expand to the whole cavity with increasing ReΦ. The results show that the number of vortex pair in the cavity is related to the intensity of the flow instability. The heat transfer intensity at upstream disk and high radius area of downstream disk increase with increasing rotational speed,while the heat transfer intensity at low radius area of downstream disk decreasing because of the decreasing of the impact effect.When the ReΦincreases to 4.94×105,the impact effect on the low radius area of downstream disk is reduced to negligible.
作者 郭隽 李庆 GUO Jun;LI Qing(School of Energy and Power Engineering,Beihang University,Beijing 100191,China)
出处 《推进技术》 EI CAS CSCD 北大核心 2018年第8期1790-1796,共7页 Journal of Propulsion Technology
关键词 旋转盘腔 非稳态 轴向通流 流动不稳定性 Rotating cavity Unsteady Axial throughflow Flow instability
  • 相关文献

参考文献7

二级参考文献31

  • 1田淑青,陶智,丁水汀,徐国强.轴向通流旋转盘腔内流动不稳定性研究[J].北京航空航天大学学报,2005,31(4):393-396. 被引量:6
  • 2OWEN J M,PINCOMBE J R.Velocity measurements inside a rotating cylindrical cavity with a radial outflow of fluid[J].J Fluid Mech,1980,99(1):111-127.
  • 3OWEN J M.Air-cooled gas-turbine discs:a review of recent research[J].Int J Heat and Fluid Flow,1988,9(4):354-365.
  • 4KIM S Y,HAN J C,MORRISON G L,et al.Local heat transfer in enclosed co-rotating disks with axial throughflow[J].Trans of the ASME:J of Heat Transfer,1994,116:66-72.
  • 5KILIC M,OWEN J M.Computation of flow between two disks rotating at different speeds[J].J of Turbomach,2003,125:394-400.
  • 6RANDRIAMAMPIANINA A,SCHIESTEL R,WILSON M.The turbulent flow in an enclosed corotating disk pair:axisymmetric numerical simulation and Reynolds stress modeling[J].Int J Heat and Fluid Flow,2004,25:897-914.
  • 7MIURA T,MIZUSHIMA J.Transitions of axisymmetric flow between two corotating disks in an enclosure[J].Fluid Dyn Res,2007,39:193-208.
  • 8Farthing P R,Long C A,Owen J M,et al.Rotating Cavity with Axial Thoughflow of Cooling Air:Heat Transfer[J].ASME Journal of Turbomachinery,1992a,114:229~236.
  • 9Kim S Y,Han J C,Morrison G L,et al.Local Heat Transfer in Enclosed Co-Rotating Disks with Axial Throughflow[J].Journal of heat transfer,1994,116:66~72.
  • 10Long C A,Tucker P G.Shroud Heat Transfer Measurements from a Rotating Cavity with an Axial Throughflow of Air[J].Journal of Turbomachinery,1994,116:525~534.

共引文献26

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部