期刊文献+

儿童失神癫痫发作期脑电信号子波熵分析 被引量:2

Wavelet entropy analysis for ictal electroencephalogram signals of child absence epilepsy
原文传递
导出
摘要 本研究采用脑电信号的整体子波熵和分尺度子波熵研究脑电信号的信息复杂性,探索儿童失神癫痫(CAE)发作的动力学机制。研究采集儿童失神癫痫患者及正常对照的脑电信号;采用连续子波变换提取脑电信号的时频特征;采用子波功率谱分析提取分尺度功率谱特征;根据分尺度功率谱计算整体子波熵和分尺度子波熵,分析整体子波熵和分尺度子波熵随CAE发作的时间演变过程,并与正常对照进行比较。结果显示:CAE患者发作期脑电信号的整体子波熵显著低于正常对照组,也低于发作间期。CAE发作时第12尺度(对应中心频率3 Hz)的分尺度子波熵显著高于正常对照,α频带(中心频率10 Hz)脑电节律的子波熵明显低于正常对照。脑电信号整体子波熵可以反映脑电信号的复杂程度,CAE发作时脑电信号的信息复杂度明显降低。子波熵降低有可能成为癫痫发作的特征神经电生理参数,为癫痫发作的神经调控技术的研究提供依据。 The integral and individual-scale wavelet entropy of electroencephalogram(EEG) were employed to investigate the information complexity in EEG and to explore the dynamic mechanism of child absence epilepsy(CAE).The digital EEG signals were collected from patients with CAE and normal controls. Time-frequency features were extracted by continuous wavelet transformation. Individual scale power spectrum characteristics were represented by wavelet-transform. The integral and individual-scale wavelet entropy of EEG were computed on the basis of individual scale power spectrum. The evolutions of wavelet entropy across ictal EEG of CAE were investigated and compared with normal controls. The integral wavelet entropy of ictal EEG is lower than inter-ictal EEG for CAE, and it also lower than normal controls. The individual-scale wavelet entropies of 12 th scale(centered at 3 Hz) of ictal EEG in CAE was significantly higher than normal controls. The individual-scale wavelet entropies for α band(centered at 10 Hz) of ictal EEG in CAE were much lower than normal controls. The integral wavelet entropy of EEG can be considered as a quantitative parameter of complexity for EEG signals. The complexity of ictal EEG for CAE is obviously declined in CAE.The wavelet entropies declined could become quantitative electrophysiological parameters for epileptic seizures, and it also could provide a theoretical basis for the study of neuromodulation techniques in epileptic seizures.
作者 张美云 王晨 张莹 陈英 吴波 张玉琴 王凤楼 ZHANG Meiyun;WANG Chen;ZHANG Ying;CHEN Ying;WU Bo;ZHANG Yuqin;WANG Fenglou(Neurology Department of Tianjin Medical Union Center,Tianfin 300121,P.R.China;Neurology Department of Tianjin Medical University General Hospital,Tianjin 300051,P.R.China;Neurology Department of Tianjin Children Hospital,Tianjin 300074,P.R.China)
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2018年第4期530-538,共9页 Journal of Biomedical Engineering
基金 天津市自然科学基金项目(14JCYBJC27000)
关键词 儿童失神癫痫 脑电图 子波熵 child absence epilepsy electroencephalogram wavelet entropy
  • 相关文献

参考文献2

二级参考文献25

  • 1周春莲,郭继志,刘宪亮,王春平,吕晓莉.网络成瘾问题研究现状及展望[J].中国医学伦理学,2004,17(3):21-23. 被引量:43
  • 2徐进,郑崇勋,和卫星.基于脑电近似熵分析的麻醉深度监测研究[J].航天医学与医学工程,2004,17(3):205-209. 被引量:11
  • 3陈晓平,和卫星,温军玲.基于脑电波复杂度的麻醉深度监测[J].江苏大学学报(自然科学版),2003,24(6):73-75. 被引量:8
  • 4赵仑,高文彬.网络成瘾患者早期面孔加工N170的研究[J].航天医学与医学工程,2007,20(1):72-74. 被引量:26
  • 5Young K S. Interact addiction : The emergence of a new disorder [ J ] . Cyberpsychol Behave, 1998, 1 ( 3 ) : 237.
  • 6Thorsten F, Patrick W, Manfred H. Nicotine stroop and addiction memory: An ERP study [ J ].International Journal ofPsychophysiology, 2006,62 ( 2 ) : 224-232.
  • 7Charalabos C, Papageorgiou Ioannis A.Long-term abstinence syndrome in heroin addicts : Indices of P300 alterations associated with a short memory task [ J ]. Progress in Neuro-Psychopharmacology and Biological Psychiatry,2004,28 (7) :1109-1115.
  • 8Rosso O A, Blanco S, Yordanova J, et al. Wavelet entropy:A new tool for analysis of short duration brain electrical signals [ J ]. Journal of Neuroscience Methods, 2001,105 (1) :65-75.
  • 9Sello S. Wavelet entropy and the multi-peaked structure of solar cycle maximum [ J ]. New Astronomy, 2003,8 ( 2 ) : 105-117.
  • 10Yordanova J, Kolev V, Rosso O A.Wavelet entropy analysis of event-related potentials indicates modalityindependent theta dominance [ J ]. Journal of Neuroscience Methods, 2002, 117 ( 1 ) : 99-109.

共引文献15

同被引文献11

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部