期刊文献+

医学图像细微结构增强方法研究进展 被引量:2

Research progress of details enhancement methods in medical images
原文传递
导出
摘要 有效的医学图像增强方法可以增强感兴趣目标或区域以及抑制背景及噪声区域,从而改善图像的质量,在减少噪声的同时保持原有的几何纹理结构,基于增强后的图像可以更方便地诊断疾病。本文针对当前医学图像细微结构增强方法展开研究,主要包括锐化增强方法、粗糙集与模糊集增强、多尺度几何增强以及基于微分算子的增强方法。最后给出几种常用的图像细节增强定量评价指标,并探讨了医学图像细微结构增强进一步的研究方向。 Effective medical image enhancement method can not only highlight the interested target and region,but also suppress the background and noise, thus improving the quality of the image and reducing the noise while keeping the original geometric structure, which contributes to easier diagnosis in disease based on the image enhanced. This article carries out research on strengthening methods of subtle structure in medical image nowadays, including images sharpening enhancement, rough sets and fuzzy sets, multi-scale geometrical analysis and differential operator. Finally,some commonly used quantitative evaluation criteria of image detail enhancement are given, and further research directions of fine structure enhancement of medical images are discussed.
作者 王宇 靳珍怡 王远军 WANG Yu;JIN Zhenyi;WANG Yuanjun(School of Medical Instrument and Food Engineering,University of Shanghai for Science and Technology,Shanghai 200093,P.R.Chin)
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2018年第4期651-655,共5页 Journal of Biomedical Engineering
基金 上海市自然科学基金(18ZR1426900)
关键词 医学图像 细微结构 增强 定量评价 medical image details enhancement quantitative evaluation
  • 相关文献

参考文献2

二级参考文献30

  • 1陈凤,李金宗,李冬冬.地震图像序列应用一致增强性扩散方法的研究[J].计算机学报,2004,27(7):985-992. 被引量:1
  • 2蒲亦非.将分数阶微分演算引入数字图像处理[J].四川大学学报(工程科学版),2007,39(3):124-132. 被引量:63
  • 3RAHAGHI F N, VAN BEEK E J, WASHKO G R. Cardiopulmonary coupling in chronic obstructive pulmonary disease: the role of imaging [J]. J Thorac Imaging, 2014, 29(2): 80-91.
  • 4FERLAY J, SOERJOMATARAM I, DIKSHIT R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136(5):E359-E386.
  • 5BERRINGTON DE GONZáLEZ A, DARBY S. Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries[J]Lancet, 2004, 363(9406): 345-351.
  • 6KALRA M K, MAHER M M, TOTH T L, et al. Strategies for CT radiation dose optimization[J]. Radiology, 2004, 230(3): 619-628.
  • 7DEGUCHI K, IZUMITANI T, HONTANI H. Detection and enhancement of line structures in an image by anisotropic diffusion [J]. Pattern Recognit Lett, 2002, 23(12): 1399-1405.
  • 8BROX T, WEICKERT J, BURGETH B, et al. Nonlinear structure tensors[J]. Image Vis Comput, 2006, 24(1): 41-55.
  • 9RASHWAN H A, GARCIA M A, PUIG D. Variational optical flow estimation based on stick tensor voting[J]. IEEE Trans ImageProcess, 2013, 22(7): 2589-2599.
  • 10MOYA-ALBOR E, ECALANTE-RAMíREZ B, VALLEJO E. Optical flow estimation in cardiac CT images using the steered Hermite transform[J]. Signal Process Image Commun, 2013, 28(3): 267-291.

共引文献4

同被引文献16

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部