摘要
Traditional tracking algorithms based on static sensors have several problems. First, the targets only occur in a part of the interested area; however, a large number of static sensors are distributed in the area to guarantee entire coverage, which leads to wastage of sensor resources. Second, many static sensors have to remain in active mode to track the targets, which causes an increase of energy consumption. To solve these problems, a target group tracking algorithm based on a hybrid sensor network is proposed in this paper, which includes static sensors and mobile sensors. First, an estimation algorithm is proposed to estimate the objective region by static sensors, which work in low-power sensing mode. Second, a movement algorithm based on sliding windows is proposed for mobile sensors to obtain the destinations. Simulation results show that this algorithm can reduce the number of mobile sensors participating in the tracking task and prolong the network lifetime.
Traditional tracking algorithms based on static sensors have several problems. First, the targets only occur in a part of the interested area; however, a large number of static sensors are distributed in the area to guarantee entire coverage, which leads to wastage of sensor resources. Second, many static sensors have to remain in active mode to track the targets, which causes an increase of energy consumption. To solve these problems, a target group tracking algorithm based on a hybrid sensor network is proposed in this paper, which includes static sensors and mobile sensors. First, an estimation algorithm is proposed to estimate the objective region by static sensors, which work in low-power sensing mode. Second, a movement algorithm based on sliding windows is proposed for mobile sensors to obtain the destinations. Simulation results show that this algorithm can reduce the number of mobile sensors participating in the tracking task and prolong the network lifetime.
作者
Chun Zhang
张淳(School of Computer Science, Nanjing University of Posts and Telecommunications)
基金
Project supported by the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20140875)
the Scientific Research Foundation of Nanjing University of Posts and Telecommunications,China(Grant No.NY213084)
the National Natural Science Foundation of China(Grant No.61502243)