期刊文献+

Transport of velocity alignment particles in random obstacles 被引量:1

Transport of velocity alignment particles in random obstacles
下载PDF
导出
摘要 We numerically investigate the trapping behaviors of aligning particles in two-dimensional (2D) random obstacles system. Under the circumstances of the effective diffusion rate and the average velocity tend to zero, particles are in trapped state. In this paper, we examine how the system parameters affect the trapping behaviors. At the large self-propelled speed, the ability of nematic particles escape from trapping state is enhancing rapidly, in the meanwhile the polar and free particles are still in trapped state. For the small rotation diffusion coefficient, the polar particles circle around (like vortices) the obstacles and here particles are in trapped state. Interestingly, only the partial nematic particles are trapped in the confined direction and additional particles remain flowing. In the free case, the disorder particle-particle collisions impede the motion in each other's directions, leading the free particles to be trapped. At the large rotation diffusion coefficient, the ordered motion of aligning particles disappear, particles fill the sample evenly and are self-trapped around obstacles. As the particles approach the trapping density due to the crowding effect the particles become so dense that they impede each other's motion. With the increasing number of obstacles, the trajectories of particles are blocked by obstacles, which obstruct the movement of particles. It is worth noting that when the number of the obstacles are large enough, once the particles are trapped, the system is permanently absorbed into a trapped state. We numerically investigate the trapping behaviors of aligning particles in two-dimensional (2D) random obstacles system. Under the circumstances of the effective diffusion rate and the average velocity tend to zero, particles are in trapped state. In this paper, we examine how the system parameters affect the trapping behaviors. At the large self-propelled speed, the ability of nematic particles escape from trapping state is enhancing rapidly, in the meanwhile the polar and free particles are still in trapped state. For the small rotation diffusion coefficient, the polar particles circle around (like vortices) the obstacles and here particles are in trapped state. Interestingly, only the partial nematic particles are trapped in the confined direction and additional particles remain flowing. In the free case, the disorder particle-particle collisions impede the motion in each other's directions, leading the free particles to be trapped. At the large rotation diffusion coefficient, the ordered motion of aligning particles disappear, particles fill the sample evenly and are self-trapped around obstacles. As the particles approach the trapping density due to the crowding effect the particles become so dense that they impede each other's motion. With the increasing number of obstacles, the trajectories of particles are blocked by obstacles, which obstruct the movement of particles. It is worth noting that when the number of the obstacles are large enough, once the particles are trapped, the system is permanently absorbed into a trapped state.
作者 朱薇静 黄小群 艾保全 Wei-jing Zhu;Xiao-qun Huang;Bao-quan Ail(Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials,School of Physics and Telecommunication Engineering South China)
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第8期164-169,共6页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China(Grant Nos.11575064 and 11175067) the PCSIRT(Grant No.IRT1243) the GDUPS(2016) the Natural Science Foundation of Guangdong Province,China(Grant No.2014A030313426)
关键词 Brownian motion self-propelled particles stochastic processes Brownian motion self-propelled particles stochastic processes
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部