摘要
We report the implementation of qubit-lubit coupling in a three-dimensional (3D) cavity, using the exchange of virtual photons, to realize logical operations. We measure single photon and multi-photon transitions in this qubit-qubit coupling system and obtain its energy avoided-crossing spectrum. With ac-Stark effect, fast control of the qubits is achieved to tune the effective coupling on and off and the state-swap gate SWAP is successfully constructed. Moreover, using two-photon transition between the ground state and doubly observed. A quarter period of this oscillation corresponds to states, bSWAP and are the foundations of future gate excited states, a kind of two-photon Rabi-like oscillation is the logical gate bSbSWAP, which is used for generating Bell preparation of two-qubit Bell states and realization of CNOT
We report the implementation of qubit-lubit coupling in a three-dimensional (3D) cavity, using the exchange of virtual photons, to realize logical operations. We measure single photon and multi-photon transitions in this qubit-qubit coupling system and obtain its energy avoided-crossing spectrum. With ac-Stark effect, fast control of the qubits is achieved to tune the effective coupling on and off and the state-swap gate SWAP is successfully constructed. Moreover, using two-photon transition between the ground state and doubly observed. A quarter period of this oscillation corresponds to states, bSWAP and are the foundations of future gate excited states, a kind of two-photon Rabi-like oscillation is the logical gate bSbSWAP, which is used for generating Bell preparation of two-qubit Bell states and realization of CNOT
基金
Project supported by the National Basic Research and Development Program of China(Grant No.2011CBA00304)
the National Natural Science Foundation of China(Grant Nos.60836001 and 61174084)
the Tsinghua University Initiative Scientific Research Program,China(Grant No.20131089314)