期刊文献+

WSANs中基于生物免疫机制的A-A智能协同方法 被引量:2

An A-A Intelligent Collaborative Method Based on Biological Immune Mechanism in WSANs
下载PDF
导出
摘要 文章受生物免疫机理启发,提出一种基于生物免疫机制的A-A智能协同方法。该方法以求解系统最大约束时间及参与协同的执行器节点数为目标,在任务协作时间模型中引入状态预测函数得出系统最大约束时间。在选择节点协同处理任务时,运用生物免疫机理求解最终参与协同的执行器节点数。在功率控制技术协助下,执行器节点可动态改变协同范围并自主决策优势执行器节点参与任务处理,让优势候选执行器节点有更多的机会参与协同工作,实现了任务与执行器节点的高效匹配,解决了能耗不均衡问题,延长了网络寿命。仿真结果表明,文中算法相比典型的RC和MOTS算法,任务平均完成时间明显减少,网络寿命明显提高。 Inspired by the biological immune mechanism, this paper proposes an A-A intelligent collaborative method based on biological immune mechanism. The method aims to solve the system’s maximum constraint time and the number of participating actor nodes. In the task cooperation time model, the state prediction function is introduced to obtain the maximum constraint time of the system; when the node is co-processed, the biological immune mechanism is used to solve the number of actor nodes that ultimately participate in the coordination. With the help of power control technology, the actor node can dynamically change the collaborative range and autonomously decide the dominant actor node to participate in the task processing, so that the superior candidate actor node has more opportunities to participate in the collaborative work, achieving efficient matching of the taskand the actor node. It solves the problem of uneven energy consumption and prolongs the network life as much as possible. The simulation results show that the proposed algorithm has better performance than typical RC and MOTS algorithms in terms of the average completion time and the network lifetime.
作者 王艳 潘琛 WANG Yan;PAN Chen(Engineering Research Center of Internet of Things Technology Applications,Ministry of Education,JiangnanUniversity,Wuxi Jiangsu 214122,China)
出处 《信息网络安全》 CSCD 北大核心 2018年第8期8-16,共9页 Netinfo Security
基金 国家自然科学基金[61572238] 国家高技术研究发展计划(863计划)[2014AA041505] 江苏省杰出青年基金[BK20160001]
关键词 无线传感执行网络 生物免疫 状态预测 协同 任务 wireless sensor and actor networks biological immune state prediction collaboration task
  • 相关文献

参考文献9

二级参考文献162

  • 1罗斌,裘正定.网络身份认证新技术[J].计算机安全,2005(10):29-31. 被引量:14
  • 2薛辉,王再芊,梁晶,王平,安凯.网络身份认证若干安全问题及其解决方案[J].计算机与数字工程,2007,35(1):81-83. 被引量:6
  • 3俞辉,王永骥,程磊.基于有向网络的智能群体群集运动控制[J].控制理论与应用,2007,24(1):79-83. 被引量:18
  • 4崔逊学,方红雨,朱徐来.传感器网络定位问题的概率特征[J].计算机研究与发展,2007,44(4):630-635. 被引量:14
  • 5Akkaya K, Senel E McLaughlan. BrianClustering of wireless sensor and actor networks based on sensor distribution and connectivity[J]. Elsevier J of Parallel and Distributed Computing, 2009, 69(6): 573-587.
  • 6Munir M F. Wireless sensor and actuator networks: research trends, protocols, and applications[C]. Proc of IEEE Int Networking and Communications Conf. New York: IEEE Press, 2008: 231-237.
  • 7Heemin P, Mani B S. Energy-efficient task assignment . framework for wireless sensor networks[R]. Los Angels: CENS Technical Reports, 2003.
  • 8Younis M, Akkaya K, Kunjithapatham A. Optimization of task allocation in a cluster-based sensor network[C]. Proc of the 8th IEEE Int Symposium on Computers and Communication. Netherlands: IEEE Computer Press, 2003: 329-334.
  • 9Animesh Pathak, Viktor K. Prasanna. Energy-efficient task mapping for data-driven sensor network macroprogramming[J]. Lecture Notes in Computer Science, 2008, 5067(2008): 516-524.
  • 10Xue Han. Bio-inspired stochastic chance-constrained multi-robot task allocation using WSN[C]. Proc of IEEE Int Joint Conf on Neural Networks. HongKong: IEEE Press, 2008: 721-726.

共引文献35

同被引文献13

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部