期刊文献+

利用最小冗余最大相关和SVM的SAR图像海上溢油识别 被引量:3

Oil Spills Identification in SAR Image Based on mRMR and SVM Model
下载PDF
导出
摘要 近年溢油事故频发,海洋污染日益严重。利用合成孔径雷达(SAR)卫星可以有效跟踪由海上溢油事故导致的油膜扩展情况。利用最大冗余最小相关-支持向量机(mRMR_SVM)算法进行SAR图像溢油识别,为溢油事故决策支持提供重要前提。首先采用mRMR提取最优特征向量集,对输入值进行降维;然后采用SVM算法解决油膜图像分类问题,同时选择径向基函数(RBF)为核函数;使用训练集训练该模型,调整模型参数;以测试集特征向量作为输入,利用训练好的模型进行溢油识别。实验结果表明,mRMR_SVM模型对SAR图像的油膜和类油膜识别有效,准确率为96.875%。 In recent years,oil spills have been frequent and marine pollution has become increasingly serious.Synthetic Aperture Radar(SAR) satellites can effectively track the oil slicks expansion caused by the oil spill.The Minimum Redundancy and Maximum Relevance-Support Vector Machine(mRMRSVM) algorithm is used to identify oil spills in SAR images and the recognition results provide important preconditions for oil spill accident decision support.First,the mRMR algorithm is applied to select the optimal eigenvector set,and the input values are reduced.Then the SVM algorithm is used to solve the oil spill image classification problem,and Radial Basis Function(RBF) is selected as the kernel function.The model is trained by using training sets and the model parameters are adjusted.The trained model is used to identify oil spills with the test set eigenvector as an input.The experimental results show that mRMRSVM model is effective for the identification of "oil slicks" and "look-alikes oil slicks" image,and the accuracy rate is 96.875%.
作者 周慧 陈澎 ZHOU Hui;CHEN Peng(Department of Software Engineering,Dalian Neusoft Information University,Dalian 116023,China;Navigation College,Dalian Maritime University,Dalian 116023,China)
出处 《电讯技术》 北大核心 2018年第8期895-899,共5页 Telecommunication Engineering
基金 国家自然科学基金资助项目(51609032) 辽宁省教育厅科技项目(L2015042)
关键词 SAR图像 溢油识别 特征选择 最大冗余最小相关(mRMR) 支持向量机(SVM) SAR image detection of oil spill feature selection minimum redundancy and maximum relevance(mRMR) support vector machine(SVM)
  • 相关文献

参考文献3

二级参考文献21

  • 1刘凤霞,刘前进.基于模糊神经网络的故障类型识别[J].继电器,2006,34(3):12-14. 被引量:10
  • 2胡婷,游大海,金明亮.一种电流突变量选相元件三相短路判据的探讨[J].电力自动化设备,2006,26(10):107-109. 被引量:16
  • 3何正友,陈小勤,罗国敏,钱清泉.基于暂态电流小波熵权的输电线路故障选相方法[J].电力系统自动化,2006,30(21):39-43. 被引量:27
  • 4Vapnik V 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 5Vapnik V N 著.许建华,张学工译.统计学习理论.北京:电子工业出版社,2004.
  • 6Van Zyl J J. Unsupervised classification of scattering behavior using radar polarimetry data. IEEE Trans. on Geoscience and remote sensing, 1989,27 ( 1 ) :36-45.
  • 7Cloude S R, Pottier E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. on Geoscience and Remote Sensing, 1997,35 (1): 68 -78.
  • 8Freeman A, Durden S L. A three-component scattering model for polarimetric SAR data. IEEE Trans. on Geoscience and remote sensing, 1998,36(3) :963-973.
  • 9Lee J-S, Grunes M R, Ainsworth T L, et al. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier. IEEE Trans. on Geoscience and Remote Sensing, 1999,37 (5) :2249-2258.
  • 10Fukuda S, Hirosawa H. Support vector machine classification of land cover: application to polarimetric SAR data. IEEE International Geoscience and Remote Sensing Symposium ,2001 : 187-189.

共引文献19

同被引文献10

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部