期刊文献+

一种动态加权的LDPC译码方法

A Dynamic Weighted Decoding Algorithm for LDPC Codes
下载PDF
导出
摘要 为了加快低密度奇偶校验(LDPC)码的译码速度,有效改善LDPC码的译码性能,针对校验节点更新过程中的对数似然比(LLR)值的大小,设计了一种LDPC码的动态加权译码方法。以IEEE 802.16e标准的奇偶校验矩阵为例,根据LLR值的变化规律,利用增长因子和抑制因子对和积译码算法和最小和译码算法进行动态加权。仿真结果显示,基于动态加权的译码方法相对于传统译码方法误码率都有明显改进,译码复杂度也有所降低。 In order to improve the decoding speed and the decoding performance of Low Density Parity Check(LDPC) codes,a dynamic weighted decoding method is designed for LDPC codes based on the value of log-likelihood ratio(LLR) in the check node update process.The parity check matrix of IEEE 802.16e is taken as the example.Then,according to the change rule of LLR value,the growth factor and the suppression factor are used to dynamically weight the LLR of the sum product decoding algorithm and the minimum sum decoding algorithm.Simulation results show that, compared with the classical algorithm,the bit error rate(BER) performance of the dynamic weighted decoding algorithm has improved significantly,and the decoding complexity has also been reduced,both in the sum product algorithm and the minimum sum algorithm.
作者 彭红焘 张立冬 史治平 李艳霞 唐锐 PENG Hongtao;ZHANG Lidong;SHI Zhiping;LI Yanxia;TANG Rui(Military Representative Office of PLA for Southwest China Institute of Electronic Technology,Chengdu 610036,China;Institute of System Engineering,Academy of Military Science,Beijing 100141,Chin;National Key Laboratory of Science and Technology on Communication,University of Electronic Science and Technology of China,Chengdu 611731,China)
出处 《电讯技术》 北大核心 2018年第8期929-933,共5页 Telecommunication Engineering
关键词 LDPC码 译码算法 动态加权 和积算法 最小和算法 LDPC codes decoding algorithm dynamic weighted sum product algorithm minimum sum algorithm
  • 相关文献

参考文献1

二级参考文献24

  • 1Gallager R G. Low- density parity- check codes[J]. IRE Transactions on Information Theory, 1962,8(1) :21- 28.
  • 2MacKay D J C. Good error- correcting codes based on very sparse matrices[ J]. IEEE Transactions on Information Theory, 1999,45(2) : 399 - 431.
  • 3Chung S,Jr Fomey G D, Richardson T J,et al. On the design of low - density parity - check codes within O. 0045 dB of the Shannon limit [ J ]. IEEE Communications Letters, 2001,5 (2) :58 - 60.
  • 4Bonello N, Chen S, Hanzo L. low - density parity - check codes and their rateless relatives [ J ]. IEEE Communications Surveys & Tutorials,2011,13( 1 ) :3 - 26.
  • 5Hu X,Eleftheriou E,Arnold D M. Regular and irregular progressive edge- growth tanner graphs[J]. IEEE Transactions on Information Theory, 2005,51 (1) : 386 - 398.
  • 6Kou Y,Lin S,Fossorier M P C. Low- density parity- check codes based on finite geometries: A rediscovery and new results[J]. IEEE Transactions on Information Theory,2001,47 (7) :2711 - 2736.
  • 7Falsafain H, Esmaeili M. A new construction of structured binary regular LDPC codes based on Steiner systems with parameter t > 2 [J]. IEEE Transactions on Communications, 2012,60(1) :74- 80.
  • 8I.an L, Zeng L, Tai Y Y, et al. Construction of quasi - cyclic LDPC codes for AWGN and binary erasure channels:A finite field approach[J]. IEEE Transactions on Information Theory, 2007,53(7) :2429 - 2458.
  • 9Zhang L, Huang Q, Lin S, et al. Quasi - cyclic LDPC codes: An algebraic construction, rank analysis, and codes on Latin" squares[J]. IEEE Transactions on Communications,2010,58 (11) :3126- 3139.
  • 10Zeng L,Lan L,Tai Y Y,et al. Constructions of nonbinary quasi - cyclic LDPC codes:A finite field approach[J]. IEEE. Transactions on Communications,2008,56(4):545 - 554.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部