期刊文献+

一种移动无线传感器网络的节点位置预测方法 被引量:6

Node Position Prediction Method for Mobile Wireless Sensor Networks
下载PDF
导出
摘要 针对目前移动无线传感器网络中现有位置预测方法的预测精度较低以及需要依靠大量的历史运动路径数据的不足,提出了一种基于不确定性支持向量机的"角度-分类"(A-USVC)位置预测方法。该方法利用节点收集的节点隶属度向量来构建归类预测模型,根据所构建的预测模型和计算的移动节点偏转方向来确定未知节点所在的区域,从而完成对移动未知节点的位置预测。仿真实验表明:在精度方面,该方法相比于传统的马尔科夫模型预测方法提高了35%,相比于神经网络预测方法提高了19%。A-USVC位置预测方法有效地提高了位置预测的精度,且计算量小,在小样本的情况下依然能保持良好的预测能力。 In view of the defects that the prediction accuracy of the existing position prediction method is low and a large number of historical movement path data need to be relied on in mobile wireless sensor network,this paper proposed an A-USVC position prediction method based on uncertain supporting vector machines.This method uses the node membership vector collected by nodes to construct classification prediction model.On the basis of the constructed prediction model and the calculated moving deflecting direction of mobile node,the location of unknown node is determined.Therefore,the position of unknown mobile node can be predicted.The simulation tests show that the proposed method improves the accuracy by 35% compared with the traditional Markov model prediction method,and improves the accuracy by 19% compared with the neural network prediction method.The A-USVC position prediction method can improve the position prediction accuracy effectively,which has low computational complexity and can also maintain good prediction ability in the case of small samples.
作者 夏扬波 杨文忠 张振宇 王庆鹏 石研 XIA Yang-bo;YANG Wen-zhong;ZHANG Zhen-yu;WANG Qing-peng;SHI Yan(College of Software,Xinjiang University,Urumqi 830046,China;College of Information Science and Technology,Xinjiang University,Urumqi 830046,China)
出处 《计算机科学》 CSCD 北大核心 2018年第8期113-118,共6页 Computer Science
基金 国家自然科学基金项目(U1603115 61262087) 国家973计划项目(2014CB340500) 新疆高校教师科研计划重点资助项目(XJEDU2012I09)资助
关键词 不确定性支持向量机 位置预测 移动无线传感网 节点隶属度向量 Uncertain support vector machines Position prediction Mobile wireless sensor network Node membership vector
  • 相关文献

参考文献1

二级参考文献6

  • 1奉国和,朱思铭.基于聚类的大样本支持向量机研究[J].计算机科学,2006,33(4):145-147. 被引量:14
  • 2Sholkopf B,Sung K,Burges C J C,et al.Comparing support vector machine with Gaussian Kernels to radial basis function classifiers[J].IEEE Trans,Signal Processing,1997,45:2758-2765.
  • 3Burges C J C.A tutorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998(2):121-167.
  • 4Vapnik V N.The nature of statistical learning theory[M].New York:Springer,1999.
  • 5Hsu C W.A practical guide to support vector classification[EB/OL].[2009-06-20].http://www.csie.ntu.edu.tw/-cjlin/papers/guide/guide.pdf.
  • 6LIBSVM-A library for support vector machines[EB/OL].[2009-06-07].http://www.csie.ntu.edu.tw/-cjlin/libsvm/.

共引文献276

同被引文献35

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部