期刊文献+

基于改进智能水滴算法的多目标供应链最优模型 被引量:5

Optimal Model of Multi-objective Supply Chain Based on Improved IWD Algorithm
下载PDF
导出
摘要 为了最大限度地降低制造型供应链的销售成本并缩短供货时间,提出了一种基于改进智能水滴算法的多目标供应链优化模型。该模型通过在选项选择期间同时考虑成本和时间来提高供应链效率,并能够将制造型供应链中的销售成本和交货时间最小化。通过使用帕累托最优准则对传统的智能水滴算法进行修改,从而得到一个帕累托集,以实现两个目标的最小化。通过3个实例对所提算法进行了测试,并采用世代距离和超区域比指标将其与蚁群优化算法进行了比较。实验结果显示,所提方法的性能更优,生成的解集更接近真实帕累托集,能够覆盖更大的解区域面积,且计算效率较高。 In order to minimize the selling cost and delivery time of manufacturing supply chain,a multi-objective supply chain optimization model based on improved intelligent water drop algorithm was proposed.The model improves the efficiency of the supply chain by considering both cost and time during option selection,and minimizes the sales cost and leads time in the manufacturing supply chain simultaneously.By using the Pareto optimality criterion,the traditional intelligent water drop algorithm is modified to obtain a Pareto set to minimize the two objectives.The algorithm was tested by three examples and compared with the ant colony optimization algorithm using the generation distance and hyperarea ratio index.The results show that the performance of the proposed method is more excellent and the generated set is closer to the real Pareto set to cover a larger area of solution region,with the calculation efficiency being high.
作者 方青 邵嫄 FANG Qing;SHAO Yuan(School of Management,Huazhong University of Science and Technology,Wuhan 430074,China;School of Management,Wuhan University of Science and Technology,Wuhan 430065,China)
出处 《计算机科学》 CSCD 北大核心 2018年第8期198-202,212,共6页 Computer Science
基金 国家自然科学基金青年资助项目(71501147) 湖北省大学生创新创业训练计划项目(201510488028)资助
关键词 制造型供应链 多目标供应链 智能水滴算法 帕累托最优 Manufacturing supply chain Multi-objective supply chain Intelligent water drop algorithm Pareto optimality
  • 相关文献

参考文献2

二级参考文献19

  • 1邱林,唐红强,陈海涛,徐亮.集对分析法在地下水水质评价中的应用[J].节水灌溉,2007(1):13-15. 被引量:74
  • 2胡凯,甘筱青,阮陆宁.生猪供应链上游结构与猪肉安全的博弈分析[J].物流技术,2007,26(3):71-73. 被引量:8
  • 3M Den Ouden, JT Nijsing, A A Dijkhuizen, et al. Eco- nomic optimization of pork production-marketing chains: I. Model input on animal welfare and costs [ J ]. Livestock Production Science ,2010,48:23 - 37.
  • 4袁曾任.人工神经网络系统理论及应用[M].北京:清华大学出版社,1999:121-123.
  • 5Kristianto Y, Gunasekaran A, Helo P, t al. A model of resilient supply chain network design: A two-stage programming with fuzzy shortest path[J]. Expert Systems with Applications, 2014, 41(1): 39-49.
  • 6Bai X, Liu Y. Robust optimization of supply chain network design in fuzzy decision system[J]. Journal of Intelligent Manufacturing, 2014, 25(3): 1-19.
  • 7Moncayo-Martinez L A, Zhang D Z. Multi-objective ant colony optimisation: a meta-heuristic approach to supply chain design[J]. International Journal of Production Economics, 2011, 131(1): 407- 420.
  • 8Mastrocinque E, Yuce B, Lambiase A, et al. A multi-objective optimisation for supply chain network using the Bees Algorithm[J]. International Journal of Engineering Business Management, 2013, 38(1): 1-11.
  • 9Bitam S, Batouche M, Taibi E. A survey on bee colony algorithms[C].Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International Sym. 2010:1-8.
  • 10Koc E. Bees Algorithm: theory, improvements and applications[D]. Cardiff: CardiffUniversity, 2010.

共引文献4

同被引文献44

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部