期刊文献+

一类由积分算子定义的p-叶解析函数的性质

Properties of Certain Subclasses of p-Valent Analytic Functions Defined by an Integral Operator
下载PDF
导出
摘要 利用卷积和广义Hurwitz-Lerchζ函数Φ(z,s,a)定义了广义Srivastava-Attiya积分算子,研究了一些由广义Srivastava-Attiya积分算子定义的p-叶解析函数类,证明了它们的一些包含关系以及积分保持的性质. The generalized Srivastava-Attiya integral operator is defined by convolution and Generalized HurwitzLerch zeta function Φ(z,s,a). Certain new subclasses of p-valent analytic functions involving the generalized Srivastava-Attiya integral operator are introduced and studied. Some inclusion relations along with integral preserving properties of these classes are obtained.
作者 李宗涛 郭栋 LI Zongtao;GUO Dong(Department of Mathematics Teaching,Guangzhou Civil Aviation College,Guangzhou 510403,China;Department of Basic Courses,Chuzhou Vocational and Technical College,Chuzhou 239000,China)
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2018年第4期102-106,共5页 Journal of South China Normal University(Natural Science Edition)
基金 广东省自然科学基金博士启动项目(2016A030310106) 安徽省教育厅高校自然科学基金项目(KJ2018A0833)
关键词 解析函数 多叶函数 Hurwitz-Lerchζ函数 Hadamard积(卷积) 广义Srivastava-Attiya算子 analytic functions multivalent functions the Hurwitz- Lerch zeta function Hadamard product ( or convolution) generalized Srivastava-Attiya operator
  • 相关文献

参考文献2

二级参考文献19

  • 1刘名生.关于某类解析函数的星象性和Ruscheweyh的一个问题(英文)[J].数学进展,2005,34(4):416-424. 被引量:4
  • 2KUMAR S S,TANEJA H C,RAVICHANDRAN V.Classes of multivalent functions defined by Dziok-Sivastava linear operator and multiplier transformation[J].Kyungpook Math J,2006,46:97-109.
  • 3NOOR K I.On new classes of integral operators[J].J Nat Geom,1999,16(1-2):71-80.
  • 4CHO N E.The Noor integral operator and strongly close-to-convex functions[J].J Math Anal Appl,2003,283:202-212.
  • 5MILLER S S,MOCANU P T.Differential subordinations:Theorey and applications[M].Pure and Applied Mathematics,No.225,New York:Marcel Dekker,2000.
  • 6SHANMUGAM T N,RAVICHANDRAN V,SIVASUBRAMANIAN S.Differential sandwich theorems for some subclasses of analytic functions[J].Austral J Math Anal Appl,2006:Article 8,11pp.
  • 7BULBOACA T.Subordination of differential superordinations[J].Complex Variables,2003,48(10):815-826.
  • 8BULBOACA T.Classes of first-order differential superordinations[J].Demonstr Math,2002,35(2):287-292.
  • 9SRIVASTAVA H M,LASHIN A Y.Some applications of the briot-bouquet differential subordination[J].J Inequal Pure and Appl Math,2005,6(2):Article 41,7pp.
  • 10ALI R M,RAVICHANDRAN V,HUSSAIN M K,et al.Differential sandwich theorem for certain analytic functions[J].Far East J Math Sci,2004,15(1):87-94.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部