摘要
进一步研究了满足条件f(u^2+kv^2)=f^2(u)+kf2(v)的数论函数f(n),证明了其在k=6的情形下可分成3类,进而验证了关于f(n)的猜想在k=6时是正确的.进一步地,总结了研究过程中出现的一些有趣结果,指出了该数论函数在参数k的不同取值下,其证明过程中出现的一些联系与区别,旨在为猜想的完全证明提供一些可能的理论支撑.
The arithmetic function f(n) which satisfies f(u^2+kv^2) = f^2(u) +k f^2(v) is further studied. It is proved that f(n) can be divided into three classes with k = 6,and thus the conjecture of f(n) in the case of k = 6 is verified. What's more,some interesting results are presented. Some relations and distinction in the process of the proof with different values of parameter k are pointed out,which aims at providing some possible theoretical support for the complete proof of the conjecture.
作者
陈亚菲
尤利华
CHEN Yafei;YOU Lihua(School of Mathematical Sciences,South China Normal University,Guangzhou 510631,China)
出处
《华南师范大学学报(自然科学版)》
CAS
北大核心
2018年第4期111-114,共4页
Journal of South China Normal University(Natural Science Edition)
基金
国家自然科学基金项目(11571123)
广东省自然科学基金项目(2015A030313377)
华南师范大学研究生科研创新基金项目(2015lkxm19)
关键词
数论函数
函数方程
刻画
arithmetic function
functional equation
charaterization