期刊文献+

一类数论函数的新进展 被引量:1

Further Research Progress on a Class of Arithmetic Functions
下载PDF
导出
摘要 进一步研究了满足条件f(u^2+kv^2)=f^2(u)+kf2(v)的数论函数f(n),证明了其在k=6的情形下可分成3类,进而验证了关于f(n)的猜想在k=6时是正确的.进一步地,总结了研究过程中出现的一些有趣结果,指出了该数论函数在参数k的不同取值下,其证明过程中出现的一些联系与区别,旨在为猜想的完全证明提供一些可能的理论支撑. The arithmetic function f(n) which satisfies f(u^2+kv^2) = f^2(u) +k f^2(v) is further studied. It is proved that f(n) can be divided into three classes with k = 6,and thus the conjecture of f(n) in the case of k = 6 is verified. What's more,some interesting results are presented. Some relations and distinction in the process of the proof with different values of parameter k are pointed out,which aims at providing some possible theoretical support for the complete proof of the conjecture.
作者 陈亚菲 尤利华 CHEN Yafei;YOU Lihua(School of Mathematical Sciences,South China Normal University,Guangzhou 510631,China)
出处 《华南师范大学学报(自然科学版)》 CAS 北大核心 2018年第4期111-114,共4页 Journal of South China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11571123) 广东省自然科学基金项目(2015A030313377) 华南师范大学研究生科研创新基金项目(2015lkxm19)
关键词 数论函数 函数方程 刻画 arithmetic function functional equation charaterization
  • 相关文献

参考文献5

二级参考文献16

  • 1华罗庚.数论导引[M].北京:科学出版社,1979..
  • 2Erdos P, Problem 6674, Amer. Math. Monthly, Vol. 98, 1991, 965.
  • 3Tabirca S, About S-multiplicative functions, Octogon, 1999, 7: 169-170.
  • 4Apstol T. M, Introduction to analytic number theory, New York: Springer-Verlag, 1976, 77.
  • 5Smarandache F.Only Problems,Not Solutions[M].Chicago:Xiquan Publishing House,1993.
  • 6Jozsef Sandor.On an generalization of the Smarandache function[J].Notes Numb.Th.Discr.Math.,1999,5:41-51.
  • 7Farris Mark,Mitchell Patrick.Bounding the Smarandache function[J].Smarandache Nations Journal.2002,13:37-42.
  • 8Wang Yongxing.On the Smarandache function[C] // Zhang Wenpeng,Li Junzhuang,Li Duansen.Research on Smarandache problem in number Theory Ⅱ.Hexis:Phoenix,AZ,2005.
  • 9Lu Yaming.On the solutions of an equation involving the Smarandache function[J].Scientia Magna.,2006,2(1):76-79.
  • 10Jozsef Sandor.On certain inequalities involving the Smarandache function[J].Scientia Magna.,2006,2(3):78-80.

共引文献111

同被引文献17

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部