期刊文献+

基于模糊神经网络和图模型推理的动作识别 被引量:3

Action Recognition Based on Fuzzy Neural Network and Graph Model Inference
下载PDF
导出
摘要 提出了一种基于模糊神经网络和图模型推理的人体动作识别方法。该方法将模糊神经网络和概率图模型推理有效地结合起来,目的在于能够更加准确、容易地对复杂视频动作序列进行识别,获得较高的动作识别精度。该方法由系统学习阶段和动作识别阶段两部分组成。首先,在系统学习阶段,构建了一个动态语义识别的层次图模型结构:第一级是基于模糊神经网络的关键帧动作识别图模型,用于关键帧的动作识别;第二级是关键帧序列分类模型,用于关键帧序列的语义识别。其次,在动作识别阶段,使用模糊神经网络和图模型推理算法进行动作识别,从而得到识别结果。最后,通过对实验结果的分析比较可以看出,相比现有的人体动作识别方法,该方法具有更好的识别性能,识别结果精度更佳。 We propose a novel action recognition method based on fuzzy neural network and graph model (FNNGM). It combines the fuzzy neural network and the probability graph model reasoning effectively,in order to be able to identify the complex video action sequence more accurately and easily and obtain a higher accuracy of action recognition. The algorithm consists of system learning and action recognition. In system learning,we firstly build a hierarchical graph model for action semantic recognition:the first level is the FNN-based representative frame (RF) gesture identification graph model which is utilized to recognize RF’s gestures;the second level is RF sequence classification model which is used to identify final semantic of RF sequence. Then in action recognition,the action recognition results are computed using the FNNGM inference algorithm. Finally,through the analysis and comparison of the experimental results,it can be concluded that the proposed method has better recognition performance and accuracy than some existing methods.
作者 赵一丹 肖秦琨 高嵩 ZHAO Yi-dan;XIAO Qin-kun;GAO Song(School of Electronic Information Engineering,Xi' an University of Technology,Xi' an 710021,China)
出处 《计算机技术与发展》 2018年第8期80-85,共6页 Computer Technology and Development
基金 国家自然科学基金(61671362 61271362) 陕西省自然科学基金(2017JM6041)
关键词 动作识别 模糊神经网络 图模型 推理 概率 action recognition fuzzy neural network graph model inference probability
  • 相关文献

参考文献6

二级参考文献89

  • 1杨尔弘,方莹,刘冬明,乔羽.汉语自动分词和词性标注评测[J].中文信息学报,2006,20(1):44-49. 被引量:16
  • 2赵岩,王晓龙,刘秉权,关毅.融合聚类触发对特征的最大熵词性标注模型[J].计算机研究与发展,2006,43(2):268-274. 被引量:20
  • 3Eric Brill.Some Advances in Transformation-Based Part of Speech Tagging[C].In:Proceedings of the Twelfth National Conference on Artificial Intelligence,1994:722~727
  • 4David M Magerman.Statistical Decision-Tree Models for Parsing[C].In:Proceeding of the 33rd Annual Meeting of the ACL,1995:276~283
  • 5Adwait Ratnaparkhi.A maximum entropy model for part-of-speech tagging[C].In:Proceedings of the Conference on Empirical Methods in Natural Language Processing,1996:133~141
  • 6J Lafferty,A McCallum,F Pereira.Conditional random fields:probabilistic models for segmenting and labeling sequence data[C].In:International Conference on Machine Learning,2001:282~289
  • 7F Sha,F Pereira.Shallow parsing with conditional random fields[C].In:the proceedings of Human Language Technology/North American chapter of the Association for Computational Linguistics annual meeting,2003:213~220
  • 8Jesús Giménez,Lluís Márquez.SVMTool:A general POS tagger generator based on Support Vector Machines[C].In:Proceedings of the 4th International Conference on Language Resources and Evaluation(LREC'04),Lisbon,Portugal,2004
  • 9Wei Jiang,Jian Zhao et al.Chinese Word Segmentation based on Mixing Model[C].In:The 4th SIGHAN Workshop,2005:180~182
  • 10Wei Jiang,Yi Guan,Xiao-Long Wang.Conditional Random Fields Based Label Sequence and Information Feedback[C].In:The Second International Conference on Intelligent Computing(ICIC2006),2006

共引文献205

同被引文献19

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部