期刊文献+

深度学习在嵌入式设备上的应用综述 被引量:1

Summary of the Application of Deep Learning in Embedded Devices
下载PDF
导出
摘要 鉴于深度学习在学术和工业领域的重要研究和应用,对目前深度学习在嵌入式系统上的应用进行详细的介绍,概述了深度学习在嵌入式设备上的研究现状,综述了深度学习的发展方向。首先介绍了嵌入式系统的研究背景与现状。其次简要概述了深度学习的几种典型结构模型,在此基础上详细综述了深度学习在嵌入式设备上的应用,最后进行了分析与总结,指出了深度学习在嵌入式设备上仍需要解决的问题及未来的研究方向。 In view of the important research and application of deep learning in academic and industrial fields, a detailed introduction to the current application of deep learning in embedded systems is given. The research status of deep learning in embedded devices is summarized, and the development direction of deep learning is summarized. First the research background and status quo of embedded systems is introduced. Secondly, several typical structural models of deep learning are briefly summarized. Based on this, the application of deep learning in embedded devices is summarized in detail. Finally, the analysis and conclusion are given. It is pointed out that deep learning still needs to be solved in embedded devices. Problems and future research directions.
作者 王瀚文 WANG Han-wen(Harbin Labor Security Information Center,Harbin 150001,China)
出处 《应用能源技术》 2018年第7期54-56,共3页 Applied Energy Technology
关键词 深度学习 嵌入式设备 创新方向 Deep learning Embedded devices Innovation direction
  • 相关文献

参考文献1

二级参考文献28

  • 1BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 2BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 3HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 4BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.
  • 5LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324.
  • 6VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103.
  • 7VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408.
  • 8YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288.
  • 9POON H, DOMINGOS P. Sum-product networks:a new deep architec- ture[ C ]//Proc of IEEE Intemational Conference on Computer Vi- sion. 2011:689-690.
  • 10BENGIO Y,LECUN Y. Scaling learning algorithms towards AI[ M]// BOTTOU L,CHAPELLE O, DeCOSTE D,et al. Large-Scale Kernel Machines. Cambridge: MIT Press ,2007:321-358.

共引文献618

同被引文献5

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部