期刊文献+

基于混沌扰动PSO算法的云计算任务调度 被引量:2

Task scheduling based on chaotic disturbance particle swarm optimization algorithm in Cloud computing environment
下载PDF
导出
摘要 粒子群优化(PSO)算法在云计算环境下任务调度方面应用十分广泛。针对算法易陷入局部最优、收敛速度慢的缺陷,从基本概念入手,在算法中加入改进的动态惯性权重和外部扰动策略,改善PSO算法的局部寻优能力,提高算法迭代后期收敛速度和搜索的精度,最后利用Cloudsim进行实验,将新算法与其他算法任务执行总的迭代次数的结果进行对比,新算法克服了粒子群算法的缺点,能够有效地平衡全局和局部搜索能力,任务的完成时间相对较少。 Particle swarm optimization( PSO) algorithm is widely used in the task scheduling in Cloud computing environment. Aiming at the problem that the particle swarm algorithm is easy to fall into local optimum and has slow rate of convergence,this paper begins with basic concept,adds dynamic inertia weight and external disturbance strategy in particle swarm algorithm to improve the local-optimization. This algorithm can solve the problems of the slow convergence and low search precision. Finally,Cloudsim simulation platform is used for testing. Comparing the results of the number of iterations between the new algorithm and other algorithms at the execution time of task,new algorithm overcomes the shortcoming of particle swarm optimization,and can effectively balance the global search and local search. The completion time of the task is observably shorter.
作者 许向阳 张芳磊 Xu Xiangyang,Zhang Fanglei(School of Information Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, Chin)
出处 《信息技术与网络安全》 2018年第8期27-30,共4页 Information Technology and Network Security
关键词 云计算 任务调度 粒子群优化算法 Cloudsim Cloud computing task scheduling particle swarm optimization Cloudsim
  • 相关文献

参考文献7

二级参考文献65

  • 1窦全胜,周春光,马铭.粒子群优化的两种改进策略[J].计算机研究与发展,2005,42(5):897-904. 被引量:39
  • 2陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 3雷开友,邱玉辉.基于自适应粒子群算法的约束布局优化研究[J].计算机研究与发展,2006,43(10):1724-1731. 被引量:22
  • 4王奕首,艾景波,史彦军,滕弘飞.文化粒子群优化算法[J].大连理工大学学报,2007,47(4):539-544. 被引量:17
  • 5Wikipedia. Cloud computing [ EB/OL ]. [ 2012 - 05 - 21 ]. http:// de. wikiped ia. org,/ wiki/Cloud_Computing.
  • 6Arfeen M A, Pawlikowski K, Willig A. A Framework for Resource Al- location Strategies in Cloud Computing Environment [ J ]. Computer Software and Applications Conference Workshops (COMPSACW), 2011 IEEE 35th AnnuM,2011:261 - 266.
  • 7Zhao Chenhong, Zhang Shanshan, Liu Qingfeng, et al. Independent Tasks Scheduling Based on Genetic Algorithm in Cloud Computing[ C ] //Proc IEEE 5th International Conference on Wireless Communica- tions, Networking and Mobile Computing WiCom'09, Beijing,2009:1 -4.
  • 8Guo Lizheng, Zhao Shuguang, Shen Shigen, et al. Task Scheduling Op- timization in Cloud Computing Based on Heuristic Algorithm [ J ]. Jour- nal of Networks. 2012,7 ( 3 ) : 547 - 553.
  • 9Li Jianfeng, Peng Jian, Cao Xiaoyang, et al. A Task Scheduling Algo- rithm Based on Improved Ant Colony Optimization in Cloud Computing Environment[ J ]. Energy Procedia, 2011 ( 13 ) :6833 - 6840.
  • 10Kennedy J, Spears W. Matching Algorithms to Problems : an Experi- mental Test of the Particle Swarm and Some Genetic Algorithms on the Multimodal Problem Generator [ C ]//Proc IEEE International Confer- ence on Evolutionary Computation. Piscataway, NJ: IEEE Service Center, 1998 : 78 - 83.

共引文献212

同被引文献16

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部